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Identifying routes toward mixed-mode oscillations (MMOs)—periodic solutions consisting of large- and small-
amplitude oscillations—is a burgeoning field of research in multiple-timescale dynamical systems. This paper
concerns a recently catalogued bifurcation associated with the emergence of MMOs: a tangency of the un-
stable manifold of a unique equilibrium point with a repelling slow manifold. This tangency is fundamental
because it functions as a ‘switch’ connecting different parts of the phase space via slow manifolds. Various
invariant objects interact in complicated ways to produce various types of MMOs, but disentangling the rela-
tive significance of each object using analytical arguments remains a difficult problem. We take the optimistic
view that this bifurcation provides a fertile ground for testing new numerical algorithms, with the ultimate
goal of classifying the variety of MMOs appearing at a particular parameter value.
First, we explore some of the routes to complicated MMOs occurring just after this bifurcation. Using nu-

merical bifurcation theory, we identify certain bifurcations in discrete return maps of the system at parameter
values near to the tangency bifurcation, and translate these into statements about MMO transitions. These
bifurcations do not sufficiently explain the existence of more elusive transitions and MMO types, so we are led
to the second part of the analysis: we construct a new dynamical partition of the domain of two-dimensional
return maps in the system. This construction relies upon topological conditions which are well-defined only
when the parameter characterizing a timescale ratio in the dynamical system is sufficiently small. With the
aid of this partition, we identify sets of unusual ‘medium’-amplitude MMOs which occur as fixed points of a
return map, and we also give numerical evidence of a Smale-Birkhoff homoclinic orbit as a route to chaotic
MMOs. This partition construction should be compared to the identification of ‘rotation sectors,’ which have
been used to organize less-complicated return maps of more elementary singular bifurcations.
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A typical three-dimensional slow-fast system can
exhibit a startling variety of complicated periodic
and chaotic motions as its parameters are var-
ied. These might include classical scenarios aris-
ing in three-dimensional flows, such as Shilnikov
bifurcations and period-doubling cascades. But
there are also intricate interactions occurring be-
tween invariant manifolds (such as fixed points,
periodic orbits, and (un)stable manifolds of these
objects), and slow manifolds, which emerge when
the characteristic ratio of timescales in the sys-
tem is sufficiently small. These interactions her-
ald entirely new and interesting solutions, such as
mixed-mode oscillations.
A self-contained ‘singular’ bifurcation theory for
these systems is not fully formed. In the mean-
time, a hybrid of numerical and geometric meth-
ods can be applied fruitfully to study their phase
portraits.
In this paper, we study a particularly com-

plicated tangency bifurcation of two-dimensional
manifolds, which heralds the existence of mixed-
mode oscillations. Our approach is to study
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return maps defined on two-dimensional cross-
sections. We also provide a new dynamical parti-
tion of these return maps. We argue that this par-
tition is natural for studying these complicated
two-dimensional returns, and may be used to illu-
minate similarly complicated bifurcation scenar-
ios. As an application, we successfully classify
several types of solutions. These include chaotic
mixed-mode oscillations and ‘medium’-amplitude
oscillations, which are not categorized neatly into
the usual framework which counts ‘large’ versus
‘small’ loops.

I. INTRODUCTION

Mixed-mode oscillations (MMOs) are periodic solu-
tions of a dynamical system containing large and small
amplitude oscillations and a distinct separation between
the two. These solutions may be characterized by their
signatures, which are symbolic sequences of the form
Ls1
1 Ls2

2 · · ·Lsk
k . This notation is used to indicate that

a particular solution undergoes L1 large oscillations, fol-
lowed by s1 small oscillations, followed by L2 large oscil-
lations, and so on. The distinction between ‘large’ and



2

‘small’ oscillations is dependent on the model. We also re-
fer to nontrivial, aperiodic, bounded solutions as MMOs.
These include solutions having arbitrarily long, nonre-
peating signatures. Such MMOs may be chaotic.
The classification of routes to MMOs with complicated

signatures as well as chaotic MMOs continues to gar-
ner interest. Global bifurcations of multiple-timescale (or
simply slow-fast) dynamical systems are natural starting
points in this direction.
We study slow-fast dynamical systems of the form

εẋ = f(x, y, ε)

ẏ = g(x, y, ε), (1)

where x ∈ Rm is the fast variable, y ∈ Rn is the slow

variable, ε > 0 is the singular perturbation parameter
that characterizes the ratio of the timescales, and f, g are
sufficiently smooth. The critical manifold C = {f = 0}
is the manifold of equilibria of the fast subsystem defined
by ẋ = f(x, y, 0). When ε is sufficiently small, theorems
of Fenichel1 guarantee the existence of locally invariant
slow manifolds that perturb from subsets of C where the
equilibria are hyperbolic. We may also project the vector
field ẏ = g(x, y, 0) onto the tangent bundle TC. Away
from folds of C, we may desingularize this projected vec-
tor field to define the slow flow. The desingularized slow
flow is oriented to agree with the full vector field near
stable equilibria of C. For sufficiently small values of ε,
trajectories of the full system can be decomposed into
segments lying on the slow manifolds near C together
with fast jumps across branches of C. Trajectory seg-
ments lying near the slow manifolds converge to solutions
of the slow flow as ε tends to 0.
In the case of two slow variables and one fast variable

(m = 1, n = 2), C is two-dimensional and its folds form
curves. Selected points on fold curves are called folded

singularities. When the slow flow is two-dimensional we
use the terms “folded node”, “folded focus”, and “folded
saddle” to denote folded singularities of node-, focus-,
and saddle-type, respectively. In analogy to classical bi-
furcation theory, folded saddle-nodes are folded singu-
larities having a zero eigenvalue. These are classified ac-
cording to their persistence as equilibria in the full system
of equations; folded-saddle nodes of type II (FSNII) are
true equilibria of the full system. At a singular Hopf bi-

furcation, a pair of eigenvalues of the linearization of the
flow crosses the imaginary axis, and a small-amplitude
periodic orbit is born at the bifurcation point. These are
shown to occur generically at O(ε)-distances from the
FSNII in parameter space.2

Characterizing the behavior near a folded singularity
has been the subject of intense study. In the case of a
folded node, Benôıt4 and Wechselberger5 observed that
the maximum number of small oscillations made by a
trajectory passing through the folded node region can be
counted using the ratio of eigenvalues of the linearization
near the folded node. Guckenheimer3 has also analyzed

the local flow maps and global return maps of normal
forms exhibiting folded nodes and folded saddle-nodes,
showing that such folded singularities can give rise to
complex and chaotic behavior.

In a complementary direction, period-doubling cas-
cades, torus bifurcations,2 and more recently, Shilnikov
homoclinic bifurcations7 have been shown to produce
MMOs with complex signatures. Even so, the connec-
tion between these bifurcations and interactions of slow
manifolds—which organize the global dynamics for small
values of ε—remains poorly understood.

In this paper, we study a minimal example of a slow-
fast three-dimensional system having a so-called “S-
shaped” critical manifold. Parametric subfamilies of this
dynamical system have served as important prototypical
models of electrochemical oscillations.6

Our focus is a tangency bifurcation catalogued by
Guckenheimer and Meerkamp.8 This tangency is impor-
tant in the context of MMOs. In our system, there
exist several mechanisms which can generate large and
small oscillations: folded singularities and a saddle-focus
equilibrium point are local mechanisms which generate
small-amplitude twisting of orbits, and an S-shaped crit-
ical manifold allows repeated reinjection into these local
regions via large-amplitude excursions. There is also a
parametric family of stable periodic orbits emerging from
the saddle-focus, which generate additional twists around
the stable manifold of the saddle-focus.

Before the tangency has occurred, the small- and large-
amplitude mechanisms are ‘disconnected’ by the basin of
attraction of the periodic orbit, in the sense that nontriv-
ial trajectories not lying in the basin of attraction escape
to infinity. The tangency bifurcation suddenly ‘connects’
these mechanisms together via bands of trajectories, al-
lowing MMOs to form (see II. Fig. 1). We expect that
aspects of this geometric analysis will remain relevant for
any sufficiently low-dimensional, smooth slow-fast system
whose critical manifold is S-shaped in a local region of
the phase space.

Another reason why this bifurcation is interesting is
that there is an interplay of several local mechanisms
which produce twisting behavior. The delicate analytic
arguments used to study twists near isolated folded sin-
gularities, or near saddle-foci, do not easily generalize to
produce an accurate global analysis. We are left with nu-
merical approximation of return maps to illuminate key
features of the bifurcation.

Due to strong phase space contraction towards attract-
ing slow manifolds of the system, it is possible to approx-
imate return maps on cleverly chosen cross-sections with
one-dimensional maps on an interval. We show that such
maps are characterized by wildly varying derivatives and
nonzero-length gaps which may be characterized as es-
cape sets, corresponding to orbits which lie in the basin
of attraction of the stable periodic orbit. The fixed points
of these maps correspond to MMOs of the full system;
however, the one-dimensional approximation gives lim-
ited information about the types of MMOs that emerge.
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To further understand how these large and small oscil-
lations connect, we must turn to two-dimensional return
maps defined on cross-sections near to the equilibrium
point and folded singularity. We show that the return
dynamics, although highly nonlinear with regions of im-
mense stretching and contraction as well as escape re-
gions, are nonetheless organized by the slow manifolds of
the system, together with the stable manifold of the equi-
librium point and the periodic orbit’s basin of attraction.

Our goal is to understand transitions of small to large
oscillations. This requires disentangling the relative in-
fluence of the folded singularity versus the saddle-focus.
Our approach is to partition the domain of the return
map depending not only on the number of small turns
the corresponding trajectories make—a technique which
has been used previously to draw ‘rotation sectors’ of re-
turn maps in other slow-fast problems—but also on the
direction of the jump from the repelling slow manifold.
We argue that this partition is able to accurately distin-
guish between the various small-amplitude mechanisms,
which is a new step forward for slow-fast systems of this
type. For example, we show that the small oscillations of
trajectories jumping right are characteristic of twists due
to a folded node, whereas small oscillations of trajecto-
ries jumping left spiral out along the unstable manifold
of the saddle-focus. Trajectories jumping left or right
also return to the cross-section very differently, giving us
more confidence that this partition isn’t spurious.

The remainder of this paper is organized as follows.

• In Sec. II, we define the three-dimensional slow-fast
system and describe the dynamics near the tan-
gency bifurcation at a broad level.

• In Sec. III, we define one-dimensional approxima-
tions to return maps and describe saddle-node bi-
furcations and period-doubling cascades of MMOs.
We also describe the statistics of the return map
at a parameter set within a chaotic window of the
period-doubling sequence.

• In Sec. IV, we define a return map on a two-
dimensional cross-section. We use the slow man-
ifolds and the basin of attraction of the small-
amplitude periodic orbit as guides to create a par-
tition according to the turning behavior of trajec-
tories with initial conditions on that cross-section.
We define a symbolic map encoding the return dy-
namics of partition subsets, and use this to stream-
line the discussion by giving concrete constructions
of MMOs with varying symbolic dynamics. We also
identify a Smale-Birkhoff homoclinic orbit, giving
rise to a full-shift over a finite set of symbols and
return horseshoes. We give numerical evidence that
this chaotic invariant set may be a chaotic attractor
of the full system.

II. DEFINING THE TANGENCY BIFURCATION

We study the following three-dimensional flow:

εẋ = y − x2 − x3

ẏ = z − x (2)

ż = −ν − ax− by − cz,

where x is the fast variable, y, z are the slow variables,
and ε, ν, a, b, c are the system parameters. This system
exhibits a singular Hopf bifurcation.2,9,10 The critical
manifold is the S-shaped cubic surface C = {y = x2+x3}
having two fold lines L0 := S ∩ {x = 0} and L−2/3 :=
S∩{x = −2/3}. When ε > 0 is sufficiently small, nonsin-
gular portions of C perturb to families of slow manifolds:
near the branches S ∩ {x > 0} (resp. S ∩ {x < −2/3}),
we obtain the attracting slow manifolds Sa+

ε (resp. Sa−
ε )

and near the branch S ∩ {−2/3 < x < 0} we obtain the
repelling slow manifolds Sr

ε . Nearby trajectories are ex-
ponentially attracted toward Sa±

ε and exponentially re-
pelled from Sr

ε . One derivation of these estimates uses
the Fenichel normal form.11 Within each family, these
sheets are O(− exp(c/ε)) close,11,12 so we refer to any
member of a particular family as ‘the’ slow manifold.
This convention should not cause confusion.
We focus on parameters where forward trajectories be-

ginning on Sa+
ε interact with a ‘twist region’ near L0, a

saddle-focus equilibrium point peq, or both. A folded sin-
gularity n = (0, 0, 0) ∈ L0 centers this twist region. The
saddle-focus peq has a two-dimensional unstable manifold
Wu and a one-dimensional stable manifold W s. This no-
tation disguises the dependence of these manifolds on the
parameters of the system.

A. Tangency bifurcation of Sr

ε with W u

Guckenheimer and Meerkamp8 drew bifurcation dia-
grams of the system (2) in a two-dimensional slice of
the parameter space defined by ε = 0.01, b = −1, and
c = 1. Codimension-one tangencies of Sr

ε and Wu are
represented in Fig. 5.1 of their paper by smooth curves
(labeled T) in (ν, a) space. For fixed a and increasing ν,
this tangency occurs after peq undergoes a supercritical
Hopf bifurcation. A parametric family of stable limit cy-
cles emerges from this bifurcation. Henceforth we refer
to ‘the’ small-amplitude stable periodic orbit Γ to mean
the corresponding member of this family at a particular
parameter set, and B(Γ) will refer to its basin of attrac-
tion. The two-dimensional stable manifolds of Γ interact
with the other invariant manifolds of the system. We will
show that B(Γ) has a significant influence on the global
returns of the system.
Fixing a = −0.03, the tangency occurs within the

range ν ∈ [0.00647, 0.00648]. The location of the tan-
gency may be approximated by studying the asymp-
totics of orbits beginning on Sa+

ε . Fix a section Σ+ =
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(a) (b)

FIG. 1. Phase space (a) just before (ν = 0.00647) and (b) just after (ν = 0.00648) tangency bifurcation of W u with Sr

ε .
Thirty trajectories are initialized in a band on Σ+. Blue curve: small-amplitude stable periodic orbit Γ. Red curves: forward
trajectories tending asymptotically to Γ without jumping to Sa−

ε . Green curves: forward trajectories making a large-amplitude
excursion before returning to Σ+. Remaining parameters are ε = 0.01, a = −0.3, b = −1, c = 1.

Sa+
ε ∩ {x = 0.27}. Before the tangency occurs, trajecto-

ries lying on and sufficiently near Wu must either escape
to infinity or asymptotically approach Γ; these trajecto-
ries cannot jump to the attracting branches of the slow
manifold, as they must first intersect Sr

ε before doing so.
Trajectories beginning in Σ+ first flow very close to peq.
As shown in Fig. 1, these trajectories then leave the re-
gion close to Wu. Before the tangency, Wu forms a part
of the boundary of B(Γ). Therefore, all trajectories suf-
ficiently high up on Sa+

ε must lie inside B(Γ) (Fig. 1(a)).

After the tangency has occurred, Wu and Sr
ε will

generically intersect transversely along isolated trajecto-
ries. These trajectories will bound sectors of trajectories
that can now make large-amplitude passages. Trajecto-
ries within these sectors jump ‘to the left’ toward Sa−

ε

or ‘to the right’ toward Sa+
ε . Trajectories initialized in

Σ+ that leave neighborhoods of peq near these sectors
contain canards, which are segments lying along Sr

ε . Ex-
amples of such trajectories are highlighted in green in
Fig. 1. We can now establish a dichotomy between those
trajectories in Σ+ that immediately flow into a neigh-
borhood of Γ and never leave, versus those that make a
global return. In Fig. 1(b), only two of the thirty sample
trajectories are able to make a global return. Near the
boundaries of these subsets, trajectories can come arbi-
trarily close to Γ before escaping and making one large
return. Note however that such trajectories might still
lie inside B(Γ), depending on where they return on Σ+.
Such trajectories escape via large-amplitude excursions
at most finitely many times before tending asymptoti-
cally to Γ. We now focus on the parameter regime where
the tangency has already occurred. In Fig. 5.1 of the
paper of Guckenheimer and Meerkamp, this corresponds
to the region to the right of the T (manifold tangency)
curve.

III. ONE DIMENSIONAL RETURN MAPS

The return map R : Σ+ → Σ+ is well-approximated
by a rank-one map on an interval, also denoted R. Our
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FIG. 2. (a-b) Subinterval of the return map R : Σ+ → Σ+ of
Eqs. (2) ((a) is a zoom-in of the right end of (b)). Dashed
black line is the line of fixed points. (c) Periodic orbit cor-
responding to fixed point of R at z ≈ 0.05939079. (d) Time
series of the periodic orbit. The orbit is decomposed into red,
gray, green, blue, magenta, and black segments (defined in
Sec. III). Parameter set: ν ≈ 0.00870134, a = −0.3, b = −1,
c = 1.
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approach in studying the dynamics of R is similar to the
analysis performed for return maps near folded nodes5

and folded saddle-nodes.3,13 In those cases, rotation sec-
tors partitioning the domain of the return map are iden-
tified. These components, arising from the twisting that
occurs near a folded singularity, classify trajectories ac-
cording to the number of small turns they make.5

In the present case there is a folded singularity, a
saddle-focus, and a small-amplitude periodic orbit; each
of these local objects plays a role in the twisting of tra-
jectories that enter neighborhoods of the fold curve L0.
The remainder of this section carries out three tasks:

• first, we approximate the return map by a one-
dimensional map on an interval and describe the
typical dynamics of a trajectory (in the full sys-
tem) corresponding to returns of this map;

• then, we demonstrate the existence of saddle-
node and period-doubling bifurcations in this one-
dimensional approximation and describe how these
bifurcations relate to transitions of MMOs occur-
ring in the full system; and

• finally, we describe a parameter set on which the
return dynamics are well-approximated by a uni-
modal map having escape sets within the interval.

A. One-dimensional projection of mixed-mode oscillations

When Γ exists, the domain of the return map is now
disconnected, with components separated by gaps of
nonzero length (Fig. 2(a)). The gaps where R is unde-
fined correspond to those trajectories beginning on Sa+

ε

that asymptotically approach Γ without making a large-
amplitude oscillation. Near the boundaries of the inter-
vals where R is defined, the derivative changes rapidly
within tiny intervals (Fig. 2(b)). These points arise from
canard segments of trajectories resulting in a jump from
Sr
ε to Sa+

ε and hence to Σ+. Fixing the parameters and
iteratively refining successively smaller windows of initial
conditions, this pattern of disconnected regions where
the derivative changes rapidly repeats several times, cer-
tainly up to the double-precision arithmetic we use in
our computations. One consequence of this structure is
the existence of large numbers of unstable periodic or-
bits, defined by fixed points of R at which |R′(z)| > 1.
This topological structure also appears to be robust to
variations of the parameter ν.
This complicated structure arises from the interaction

between B(Γ), the twist region near the folded singular-
ity and Wu,s. To illustrate this, consider an unstable
fixed point z ≈ 0.05939079 of the return map defined in
Fig. 2(a). The corresponding unstable periodic orbit in
the full system of equations is shown in Fig. 2(c)-(d).
This orbit is approximately decomposed according to its
interactions with the (un)stable manifolds of peq and the

slow manifolds. Here is one possible forward-time decom-
position of this orbit:

• A segment (red) that begins on Sa+
ε and flows very

close to peq by remaining near W s,

• a segment (gray) that leaves the region near peq
along Wu, then jumping right from Sr to Sa+

ε ,

• a segment (green) that flows from Sa+
ε to Sr

ε , mak-
ing small-amplitude oscillations while remaining a
bounded distance away from peq, then jumping
right from Sr

ε to Sa+
ε ,

• a segment (blue) that flows back down into the re-
gion near peq, making small oscillations aroundW s,
then jumping right from Sr

ε to Sa+
ε ,

• a segment (magenta) with similar dynamics to the
green segment, making small-amplitude oscillations
while remaining a bounded distance away from peq,
then jumping right from Sr

ε to Sa+
ε , and

• a segment (black) making a large-amplitude excur-
sion by jumping left to Sa−

ε , flowing to the fold
L−2/3, and then jumping to Sa+

ε .

A linearized flow map can be constructed14,15 in small
neighborhoods of the saddle-focus peq, which can be used
to count the number of small-amplitude oscillations con-
tributed by orbit segments approaching the equilibrium
point. However, the small-amplitude periodic orbit and
the twist region produce additional twists, as observed in
the green and magenta segments of the example above.
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FIG. 3. Saddle-node bifurcation of periodic orbits in system
(2). (a) ν = 0.00801, (b) ν = 0.00802. Dashed black line is
the line of fixed points {z, z}. Remaining parameters: a =
−0.3, b = −1, c = 1.
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B. Bifurcations of MMOs: saddle-node and

period-doubling

Fixed points of a return map defined on the section
Σ+ are interpreted in the full system as the locations of
mixed-mode oscillations, formed from trajectories mak-
ing one large-amplitude passage after interacting with
the local mechanisms near L0. Similarly, periodic or-
bits of the (discrete) return map can be used to iden-
tify mixed-mode oscillations having more than one large-
amplitude passage. We demonstrate common bifurca-
tions associated with these invariant objects. First we lo-
cate a saddle-node bifurcation of periodic orbits, in which
a pair of orbits coalesce and annihilate each other at a
parameter value.

Fig. 3 demonstrates the existence of a fixed point
z = R(z) with unit derivative as ν is varied within
the interval [0.00801, 0.00802]. Such a parameter set lies
on a generically codimension one branch in the param-
eter space. Saddle-node bifurcations produce a stable-
unstable pair of cycles in the full system (with identical
signatures to the bifurcating orbit). Either of these may
in turn undergo torus bifurcations and period-doubling
cascades as a parameter is varied.

The beginning of a period-doubling cascade is iden-
tified in the return map R as ν is varied in the inter-
val [0.008685, 0.0087013] (Fig. 4a). Within this range,
period-3, period-5, and period-6 windows are readily
identifiable in Fig. 4(b). The local unimodality of the
return map suggests that our (ν-parametrized) family of
return maps share some universal properties with maps
of the interval that exhibit period-doubling cascades,20,21

despite the nonlinearity at the right boundary of the in-
terval observed in Fig. 2. This structure appears to be

(a)

(b)

FIG. 4. (a) Period-doubling bifurcation sequence of the one-
dimensional approximation of the return map R : Σ+ → Σ+

as the parameter ν is varied from 0.008685 to 0.0087013. Re-
maining parameters: a = −0.3, b = −1, c = 1. (b) Magnifi-
cation of upper branch of first period doubling cascade.

robust to small changes in the parameter ν.

We conclude by stressing that these bifurcations gener-
ate additional large-amplitude oscillations of MMOs (i.e.
the transition is of the form Lsn

n → (2Ln)
sn). In between

period-doubling events, more small-amplitude twists may
be generated, but a shortcoming of this one-dimensional
analysis is that we cannot see where these intermedi-
ate bifurcations occur. The mechanism for producing
small-amplitude oscillations will become clearer in part
IV, when we study return maps defined on cross-sections
nearer to peq and Γ.

C. Nontrivial aperiodic MMOs

We recall a classical result of unimodal dynamics for
the quadratic family fa(x) = 1 − ax2 near the critical
parameter a = 2, where fa : I → I is defined on its
invariant interval I (when a = 2, I = [−1, 1]). On pos-
itive measure sets of parameters near a = 2, the map
fa admits absolutely continuous invariant measures with
respect to Lebesgue measure.22 These facts depend on
the delicate interplay between stretching behavior away
from neighborhoods of the critical point, together with
recurrence to the arbitrarily small neighborhoods of the
critical point as trajectories are ‘folded back’ under the
action of f . This motivates our current objective: to lo-
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FIG. 5. (a) Forward trajectory (red points) of the critical
point (green square) under the return map R : Σ+ → Σ+.
Red dashed lines indicate the cobweb diagram of the first two
iterates of the trajectory to guide the eye. Black dashed line
intersects the graph of R at fixed points. All 1284 forward
iterates are plotted. The subsequent iterate lands outside the
domain of R: the corresponding portion of the full trajectory
of (2) tends asymptotically to Γ without returning to Σ+.
(b) Distribution of points in the forward orbit of the critical
point. Parameter set: ν ≈ 0.00870134, a = −0.3, b = −1,
c = 1.
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cate a parameter set for which (i) there exists a forward-
invariant subset Σu ⊂ Σ+ where R : Σu → Σu has ex-
actly one critical point c ∈ Σu, and (ii) R2(c) is a fixed
point of R.
It is difficult to locate a parameter set satisfying both

(i) and (ii), but we can relax condition (i) to identify a
parameter set where (i′) R has the topology of Fig. 2
(i.e. is unimodal over a sufficiently large interval) and
admits a critical point satisfying (ii). This parameter set
is numerically approximated using a two-step bisection
algorithm. First, a bisection method is used to approx-
imate the critical point c by refining the region where
R′ first changes sign up to a fixed error tolerance 10−15.
Another bisection method is used to approximate the pa-
rameter value at which |R2(c)−R3(c)| is minimized. This
distance can be minimized to 2.5603 × 10−8 at the pa-
rameter set (ν, a, b, c) = (0.0087013381084,−0.3,−1, 1).
Fig. 5(a) depicts the forward trajectory of the crit-

ical point near the line of fixed points at this parame-
ter value. The itinerary of c is finite, eventually landing
in a subinterval of Σu where R is undefined. Even so,
its forward orbit is unpredictable, sampling the interval
[

R(c), R2(c)
]

with a nontrivial transient density for 1284
iterates (Fig.5(b)). The length of the itinerary is ex-
tremely sensitive to tiny (O(10−14)) perturbations of the
parameter b, reflecting the sensitive dependence of ini-
tial conditions in the selected parameter neighborhood.
However, the distributions of the forward iterates appear
to be more robust to small parameter changes: they are
all similar to the distribution shown in Fig. 5(b).

IV. TWO-DIMENSIONAL RETURN MAPS

Fix a compact subset Σ0 ⊂ {z = 0} containing the
first intersection (with orientation ż > 0) of W s and such
that Γ ∩Σ0 = ∅, and let φt be the flow associated to the
dynamical system, with t ∈ R. We define the immediate

basin of attraction B0 ⊂ B(Γ) of Γ as the set of points in
x ∈ Σ0 ∩ B(Γ) such that φt>0x ∩ Σ0 = ∅, with ∂B0 its
boundary.
The forward return map R : Σ0 → Σ0 is undefined

on the subset B0, and points landing in B0 under for-
ward iterates of R ‘escape.’ We have the set inclu-
sion φt≥0(∪∞

i=0R
−i(B0)) ⊂ B(Γ), and the j-th iterate

of the return map Rj is defined only on the subset
Σ0 − ∪j

i=0R
−j(B0). We abuse notation slightly and de-

note by Sa+
ε (resp. Sr

ε ) the intersections of these slow
manifolds with Σ0. We also refer to the intersection of
Sa+
ε (resp. Sr

ε ) with Σ0 as the attracting (resp. repelling)
spiral due to its distinctive shape (see Figure 6). The
basin B0 is sampled by the gray points in Fig. 6(a), ac-
counting for the finite-length gaps in the one-dimensional
return maps.
The slow manifolds intersect transversely. Segments

of the attracting spiral can straddle both B0 and the
repelling spiral. In Fig. 6(b), we color initial conditions
based on the maximum y-coordinate achieved by the cor-

responding trajectory before its return to Σ0. Exchange
Lemma-type calculations imply that only thin bands of
trajectories are able to remain close enough to Sr

ε to
jump at an intermediate height. We choose the maximum
value of the y-coordinate to approximately parametrize
the length of the canards. This parametrization heavily
favors trajectories jumping left (from Sr

ε to Sa−
ε ) rather

than right (from Sr
ε to Sa+

ε ), since trajectories jumping
left can only return to Σ0 by first following Sa−

ε to a
maximal height, and then jumping from L−2/3 to Sa+

ε .
In Figure 6, Sr

ε separates the blue and yellow regions,
allowing us to distinguish trajectories turning right to
Sa+
ε or left to Sa−

ε before returning to Σ0. This distinc-
tion will become useful in constructing our dynamical
partition later. Summarizing, ∂B0 and Sr

ε partition this
section according to the behavior of orbits containing ca-
nards.
Trajectories beginning in Σ0 either follow W s closely

and spiral out along Wu or remain a bounded distance
away from both the equilibrium point and W s, instead
making small-amplitude oscillations consistent with a
folded node.
The transition from one type of small-amplitude oscil-

lation to the other depends continuously on the initial
condition from W s, which we now demonstrate with an
example. Two initial conditions are chosen on a verti-
cal line embedded in the section {z = 0}, having the
property that the resulting trajectory jumps right from
Sr
ε at an intermediate height before returning to the sec-

tion with orientation ż < 0. These initial conditions are
found by selecting points in Fig. 6(b) in the blue regions
lying on a ray that extends outward from the center of
the repelling spiral. The corresponding return trajec-
tories are plotted in Fig. 7. The production of small-
amplitude oscillations is dominated by the saddle-focus
mechanism: in the example shown, the red orbit exhibits
four oscillations before the (relatively) large-amplitude
return, whereas the blue orbit exhibits seven oscillations.
We can select trajectories with increasing numbers of
small-amplitude oscillations by picking points closer to
W s ∩ {z = 0}.
A complication in this analysis which we have ignored

until now is that jumps at intermediate heights, which
are clearly shown to occur in these examples, blur the
distinction between ‘large’ and ‘small’ oscillations in a
mixed-mode cycle. We will construct one such ‘medium’
amplitude MMO concretely in the next section. This
makes a classification of trajectories based on signature
less useful. Our forthcoming partition will instead clas-
sify orbits based on the number of turns and on a ‘jump
direction,’ which will remove this ambiguity.

A. Dynamical partitions

We now study some of the possible concatenations of
small-amplitude oscillation segments as seen in Fig. 7.
The basis for determining allowed concatenations is to
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FIG. 6. (a) Geometry in the section Σ0 = {(x, y, z) : x ∈ [−0.07, 0.11] , y ∈ [−0.005, 0.01] , z = 0}. Gray points sample the
subset of Σ0 whose corresponding forward trajectories tend to the stable periodic orbit without returning to Σ0. Green points
denote the first forward return of the remaining points in Σ0 with the orientation ż < 0. (b) Color plot of maximal height
(y-coordinate) obtained by trajectories that return to Σ0 as defined in (a). Cross-sections of Sa+

ε (red) and Sr

ε (black) at Σ0

are shown, and the tangency of the vector field with Σ0 (i.e. the set {ax + by = −ν}) is given by the magenta dashed line.
Parameter set: ν ≈ 0.00870134, a = 0.01, b = −1, c = 1.
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FIG. 7. (a) Two phase space trajectories beginning and
ending on the section {z = 0} with stopping condi-
tion ż < 0 and (b) the time series of the y-coordinates
of each trajectory. To better compare qualitative differ-
ences between these orbit segments, stopping times and
amplitudes are both rescaled to one. Initial conditions:
blue, (x, y, z) = (0.000553, 0.000201, 0); red, (x, y, z) =
(0.000553, 0.003065, 0). Parameter set: ν ≈ 0.00870134,
a = 0.01, b = −1, c = 1.

partition the cross-section Σ0 and then to study the im-
ages of these partition subsets under the forward return
map. We gradually define this partition in stages:

• First, tangencies of the vector field with Σ0 allow
us to restrict to an invariant subset of the cross-
section

• Then, we identify mixed-rank behavior in this sub-
set which is intimately connected to the intersec-
tions of Sa+

ε with Sr
ε . This allows us to generate a

coarse partition.

• Finally, we define the winding number of a trajec-
tory, which allows us to further refine this partition.
Subsets in this refined partition therefore depend
on both the turning of the trajectory with initial
condition in Σ0 as well as the location of this ini-
tial condition relative to Sr

ε .

Tangencies of the vector field with the cross-section are
given by curves which partition the section into discon-
nected subsets. The subset that does not contain the
attracting and repelling spirals is mapped with full rank
to the remaining subset by the return map (Fig. 8(b)),
allowing us to restrict our analysis to an invariant two-
dimensional subset where the vector field is transverse
everywhere. Mixed-rank behavior occurs in this subset,
as shown in Fig. 8.
Note that the figures 8-12 are plotted at a slightly dif-

ferent parameter set from the earlier figures 6 and 7,
whose parameter set was chosen to give a clearer picture
of the main components of the return map. The main dif-
ference is that the line of vector field tangencies intersects
a portion of the attracting spiral, but this does not affect
the proceeding arguments. Trajectories jumping left to
Sa−
ε reach a greater maximal height (y-component) than

the trajectories jumping right to Sa+
ε . The region is par-

titioned according to three criteria: their location with
respect to the curve of tangency, and their location with
respect to the repelling spiral (corresponding to left or
right jumps), and their winding number, defined later in
this section. See Fig. 8.
We can now state two significant results:

• Mixed-rank dynamics. As shown in Fig. 8(c)-(d),
the red and blue regions collapse to Sa+

ε within one
return. This includes those trajectories that return
to the cross-section by first jumping right from Sr

ε
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FIG. 8. (a) Partition of a compact subset of the cross-section Σ0. Black dashed line is the tangency of the vector field {ż = 0},
separating the subsets {ż > 0} (black points) and {ż < 0}. Yellow (resp. green): points above (resp. below) the line {y = 0}
with winding number less than three. Red (resp. blue): points whose forward trajectories reach a maximal height greater than
(resp. less than) 0.18 and have winding number three or greater. (b) Overlay of red and blue subsets of domain (points) with
images of yellow, green, and black subsets (crosses). (c) Overlay of red and blue subsets of domain (points) with the image
of the blue subset (crosses). (d) Overlay of attracting spiral (magenta), repelling spiral (dark green), and image of red subset
(crosses). Note the change in scale of the final figure. Generated from a 500 × 500 grid of initial conditions beginning on Σ0.
Parameter set: ν ≈ 0.00870134, a = −0.3, b = −1, c = 1.

to Sa+
ε at an intermediate height. Fig. 8(b) shows

that the yellow subset returns immediately to this
low-rank region. The green subset returns either
to the low-rank region or to the yellow region. But
note that it does not intersect its image, and fur-
thermore, it intersects the yellow region on a por-
tion of the attracting spiral. Therefore, after at
most two returns the dynamics of the points begin-
ning in Σ0 (and which did not map to B0) is char-
acterized by the dynamics on the attracting spiral.

• Trajectories jumping left or right return differently.
Those trajectories jumping left to Sa−

ε return to a
tiny segment very close to the center of the Sa+

ε ,
as shown in Fig. 8(d). In contrast, the trajectories
jumping right sample the entire spiral of Sa+

ε , as
shown in Fig. 8(c). Thus, multiple intermediate-
height jumps to the right are a necessary ingredient
in concatenating small- and medium-amplitude os-
cillations (arising from right jumps) between large-
amplitude excursions (arising from left jumps).

We now construct a dynamical partition of the cross-
section. Let s and u denote a stable and unstable eigen-
vector, respectively, of the linearization of the flow at peq.
Then consider a cylindrical coordinate system with basis

(u, s, n) centered at peq, where n = u×s. The winding of
a given trajectory is the cumulative angular rotation (di-
vided by 2π) of the projection of the trajectory onto the
(u, n)-plane. The winding number (or simply number of
turns) of a trajectory is the integer part of the winding.
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FIG. 9. Winding of the attracting spiral as a function of its
parametrization by arclength. The starting point s = 0 is
chosen close to the tangency. Positive values of s track the
spiral as it turns inward. Parameter set: ν ≈ 0.00870134,
a = −0.3, b = −1, c = 1.
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FIG. 10. Partition of the section Σ0 = {z = 0} according to number of turns made by corresponding trajectories as well as
whether the trajectories turn left or right from Sr

ε . Left-turning trajectories are plotted with dots and right-turning trajectories
are plotted with crosses. Color definitions: teal, 3 turns; blue, 4 turns; gray, 5 turns; green, 6 turns; gold, 7 turns; magenta,
8 turns. The slow manifolds Sa+

ε (red curve) and Sr

ε (black curve) and the saddle-point defined in Figure 11 (green square)
are also shown. Yellow diamonds: final intersections of trajectories starting from a 20× 20 grid of initial conditions beginning
on Σ0, which exhibit between 4 and 35 returns before tending asymptotically to Γ. Parameter set: ν ≈ 0.00870134, a = −0.3,
b = −1, c = 1.

The cumulative angular rotation depends on both the
initial and stopping condition of the trajectory, which in
turn depend on the section used. Close to peq, the wind-
ing of a trajectory measures winding around W s. This is
desirable since most of the rotation occurs as trajectories
enter small neighborhoods of peq by winding around W s.

If Fig. 9, we study the winding on a connected subset
of the attracting spiral. On this connected subset we may
parametrize the spiral by its arclength. The number of
turns increases by approximately one whenever Sa+

ε in-
tersects Sr

ε twice (these intersections occur in pairs since
they correspond to bands of trajectories on Sa+

ε which
leave the region by jumping left to Sa−

ε ). In between
these intersections, there are gaps corresponding to re-
gions where Sa+

ε intersects B0.

As shown in Fig. 10, sets in the partition are defined
according to each trajectory’s winding number and jump
direction. This partition uses the attracting and repelling
spirals as a guide; small rectangles straddling the attract-
ing spiral are contracted strongly transverse to the spiral
and stretched along the attracting spiral, giving the dy-
namics a hyperbolic structure. In the next section we
will compute a transverse homoclinic orbit, where this
extreme contraction and expansion is shown explicitly.

B. Symbolic maps

We restrict ourselves to a subset S ⊂ Σ0 where re-
turns are close to rank one (i.e. the union of red and
blue regions in Fig. 8(a)). Let Ln ⊂ S (resp. Rn ⊂ S)
denote points whose forward trajectories make n turns
before jumping left to Sa−

ε (resp. right to Sa+
ε ). Then

define Ltot = ∪∞
n=0Ln and Rtot = ∪∞

n=0Rn. The col-
lection P = {Li, Rj}∞i,j=1 partitions S. We clarify the
following ambiguity: the newly-defined symbols Li are
unrelated to the large-amplitude oscillation notation in
the definition of an MMO signature (eg. Lsi

i ).
For a collection of sets A, let σ(A) denote the set of

all finite or infinite one-sided symbolic sequences x =
x0x1x2 · · · with xi ∈ A. We can assign to each x ∈
S a symbolic sequence in σ(P ∪ {Sc, B0}), also labeled
x. This sequence is constructed using the return map:
x = {xi} is defined by xi = ι(Ri(x)), where ι : Σ0 →
P ∪ {B0, S

c} is the natural inclusion map. We allow
finite sequences since R is undefined over B0. A portion
of the partition is depicted in Fig. 10.
The results in Figs. 8 and 10 and the definition of B0

constrain the allowed symbolic sequences:

• Blocks containing Sc. R(Sc) ⊂ S (Fig. 8(b)).

• Allowable symbols following Ri. The following in-
tersections with R(Rtot) are nonempty:
R(Rtot) ∩ Sa+

ε ∩ Li 6= ∅ and
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R(Rtot) ∩ Sa+
ε ∩Rj 6= ∅

whenever Li, Rj 6= ∅ (Figs. 8(c) and 10).

• Allowable symbols following Li. There exists a suf-
ficiently large integer N with
R(Ltot) ⊂ Sa+

ε ∩ (∪n≥NLn ∪ Rn ∪B0) (Figs. 8(d)
and 10).

• Finite symbol sequences. The set of finite sequences
are precisely those containing and ending in B0

(yellow points in Fig. 10).

The subset Sc intersects the image of Rtot nontrivially.
The first result implies the symbolic sequence of a point
x ∈ S whose forward returns leave the subset S must
contain the block

xnj−1S
cxnj

,

where the index nj is defined by the j-th instance when
the orbit leaves S and xnj−1 ∈ P . Our numerical results
allow us to further constrain the allowed symbols of xnj

.
For the parameter set we used, the subset R(Sc ∩ Sa+

ε )
nontrivially intersects subsets of P∪{B0} only in the sub-
collection Pc = {L3, L4, L5, R3, R4, R5, B0}. The portion
of the attracting spiral which lies outside S is a subset
of the region of Σ0 where R has full rank. Therefore,
the image of this portion of the attracting spiral is well-
approximated by a curve segment lying inside the region
sampled by the yellow and black points shown in Fig.
8(b). Therefore xnj

∈ Pc whenever nj is defined.
The second result implies that for any integer n ≥ 1,

the block Lnαm (where α ∈ {L,R}) is impossible when
m < N , since R(Ln) is either B0 or αm≥N . For the
parameter set used in Fig. 10, our calculations suggest
N ≥ 13. The third result reminds us that only right-
jumping trajectories are able to sample the entire at-
tracting spiral.
The second and third results then imply that blocks of

type RiLj or RiRj are necessarily present in the symbolic
sequences of orbits which concatenate small-amplitude
oscillations with medium-amplitude oscillations as shown
in Fig. 7, since medium-amplitude oscillations arise pre-
cisely from those points on Σ0 whose forward trajec-
tories remain bounded away from the saddle-focus (i.e.
those points in Σ0 sufficiently far from the intersection of
W s with Σ0) and jump right. These results also imply
that forward-invariant subsets lie inside the intersection
of Sa+

ε with Σ0. In terms of the full system, it follows
that the trajectories corresponding to these points each
contain segments which lie within a sheet of Sa+

ε .
In view of the last result, for each i ≥ 1 define the i-th

escape subset Ei to be the set of length-i sequences ending
in B0. Note that Ei contains the symbol sequences of
the points in R−(i−1)(B0). Escape rates of typical initial
conditions in Σ0 are studied in detail in the following
section. The next section provides a concrete numerical
example of a point in En, where n is at least 1284.
Let us summarize the main results of the symbolic dy-

namics. Points beginning on Σ0 are identified with one of
the following three types of one-sided symbolic sequences:
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FIG. 11. (a) Mixed-mode oscillation in phase space corre-
sponding to the saddle point p ≈ (−0.053438, 0.001873) of
the return map defined on Σ0 = {z = 0} and (b) the time
series of its x-component. Parameter set: ν ≈ 0.00870134,
a = −0.3, b = −1, c = 1.

• Sequences ending in B0 (tending asymptotically
close to Γ)

• Sequences with an infinitely repeating finite block
(periodic MMOs)

• Infinitely long, nonrepeating sequences (nontrivial,
aperiodic MMOs).

C. Case study: Symbolic dynamics near a saddle-point

and medium-amplitude oscillations

The structure of the invariant sets and escape sets of
the two-dimensional return map is related to the inter-
section of the basin of attraction of the small-amplitude
stable periodic orbit with Σ0. We begin by studying two
types of invariant sets: fixed points and transverse ho-
moclinic orbits.
Certain invariant sets of the map may be used to con-

struct open sets of points all sharing the same initial
block in their symbolic sequence. We briefly describe
how the simplest kind of invariant set—a fixed point—
implies that neighborhoods of points must have identical
initial sequences of oscillations. In Fig. 11 we plot the
saddle-type MMO corresponding to a saddle equilibrium
point p, whose location in the section {z = 0} is plotted
in Figs. 10 and 12. According to Fig. 10, p has symbolic
sequence R5R5R5 · · · , in agreement with the time-series
shown in Fig. 11(b). Observe that the fixed-point is suf-
ficiently far away from W s (the stable manifold of the
saddle-focus) that the oscillations of the corresponding
periodic orbit do not clearly arise from small winding
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near peq. Furthermore, the dynamics in small neighbor-
hoods of p are described by the linearization of the map R
near p. This implies that small neighborhoods of p con-
sist of points with initial symbolic blocks of R5, where
the length of this initial block can be as large as desired.
We can relax the condition that this be the initial block
by instead considering preimages of these neighborhoods.
From this case study we observe that arbitrarily long

chains of oscillations of varying sizes can be constructed
using immediate neighborhoods of fixed points, periodic
points, and other invariant sets lying in Sa+

ε ∩ {z = 0}.
These in turn correspond to complicated invariant sets
in the full three-dimensional system. Consequently, the
maximum number of oscillations produced by a periodic
orbit having one large-amplitude return can be very large
at a given parameter value, depending on the number of
maximum possible returns to sections in the region con-
taining these local mechanisms. This situation should be
compared to earlier studies of folded-nodes, in which tra-
jectories with a given number of small-amplitude oscilla-
tions can be classified;5 and the Shilnikov bifurcation in
slow-fast systems, in which trajectories have unbounded
numbers of small-amplitude oscillations as they approach
the homoclinic orbit.7

D. Structure of invariant and escape sets

The return map R strongly contracts two-dimensional
subsets of the cross-section to approximately one-
dimensional subsets of Sa+

ε . Subsequent returns act on
Sa+
ε by stretching and folding multiple times, before fi-

nally contracting strongly onto Sa+
ε again. Chaotic in-

variant sets and horseshoes of the two-dimensional return
map must clearly be very degenerate. We now explore
the structure of these invariant sets.
Let U be a small neighborhood of the saddle fixed point

p that we located in the previous section. In Fig. 12 we
plot U , R(U), U ∩R−1(U), and W s(p) on the section Σ0.
The image R(U) is a nearly one-dimensional subset of
Sa+
ε and the preimage is a thin strip which appears to be

foliated by curves tangent to Sr
ε . The subsets R(U) and

R−1(U) contain portions of Wu(p) and W s(p), respec-
tively. The transversal intersection of R(U) with W s(p)
is also indicated in this figure.
Accurately computing R−1 is challenging. Trajecto-

ries which begin on the section and approach the at-
tracting slow manifolds Sa±

ε in reverse time are strongly
separated, analogous to the scenario where pairs of tra-
jectories in forward time are strongly separated by Sr

ε .
This extreme numerical instability means that trajecto-
ries starting on the section and integrated backward in
time typically become unbounded. In order to compute
W s(p), we instead compute orbits in forward time and
recast this as a boundary value problem, with initial con-
ditions beginning in a line on the section and ending ‘at’
p. Beginning with a point y0 along W s(p), we construct
a sequence {y0, y1, · · · } along W s(p) as follows.

(C1) Prediction step. Let wi = yi−1 + hvi, where h
is a fixed step-size and vi is a numerically approximated
tangent vector to W s(p) at yi−1.
(C2) Correction step. Construct a line segment Li of

initial conditions perpendicular to vi. Use a bisection
method to locate a point yi ∈ Li such that |R(yi)−p| < ε,
where ε is a prespecified tolerance.
The relevant branch of W s(p) which intersects R(U)

lies inside the nearly singular region of the return map, so
the segment Li can be chosen small enough that R(Li) is
approximately a segment of Sa+

ε which straddles p. This
justifies our correction step above.
It is usually not sufficient to assert the existence of a

transverse homoclinic orbit from the intersection of the
image sets. But in the present case, these structures are
organized by the slow manifolds Sa+

ε and Sr
ε . The strong

contraction onto Sa+
ε in forward time implies that the

discrete orbits comprising Wu(p) must also lie along this
slow manifold. The unstable manifold Wu(p) lies inside
a member of the O(exp(−c/ε))-close family which com-
prises Sa+

ε , so the forward images serve as good proxies
for subsets of Wu(p) itself. On the other hand, when U
is sufficiently small, its preimage R−1(U) appears to be
foliated by a family of curves tangent to Sr

ε , such that
one of the curves contains W s(p) itself.
The Smale-Birkhoff homoclinic theorem16,17 then im-

plies that there exists a hyperbolic invariant subset on
which the dynamics is conjugate to a subshift of finite
type. Fixed points lie in Sa+

ε due to strong contrac-
tion, but they need not lie in Sr

ε . We end this re-
sult by commenting on the apparent degeneracy of the
two-dimensional sets U,R(U), and R−1(U). A clas-
sical proof of the Smale-Birkhoff theorem uses a set
V = Rk(U) ∩ R−m(U) (with k,m > 0 chosen such that
V is nonempty) as the basis for constructing the Markov
partition on which the shift is defined.18 Here, V is well-
approximated by a curve segment.
A natural question is whether this hyperbolic invari-

ant set is indeed a chaotic attractor. It is difficult to
conclusively decide set-invariance with finite-time com-
putations. This difficulty is made clear in Fig. 12(b),
where we study the eventual fate of a grid of initial condi-
tions beginning on Σ0. This figure shows that even after
a long integration time of t = 600, most initial conditions
in Bc

0 are able to return repeatedly to Σ0. However, it
may simply be that the measure of (R−n(B0))

c decays
extremely slowly to 0 as n tends to infinity.

Nonetheless, we can recover some comparisons to well-
studied maps which have escape subsets and hyperbolic
behavior. Known results on escape rates of expansive
maps suggest that the probability that a typical point
does not escape after n returns decreases as c−n for some
positive constant c.19 Returning briefly to the section Σ+,
define the function E : Σ+ → {0, 1, 2, · · · } ∪ {∞} by
E(x) = n if n is the maximum integer for which Rn(x)
is defined (i.e. Rn(x) ∈ B0) and E(x) = ∞ if Rn(x) is
defined for all n.
In Fig. 12(c) we compute P (E(x) ≤ n) vs. n for 104
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FIG. 12. (a) A saddle equilibrium (green point) of the return
map defined on Σ0 = {z = 0}, together with a neighbor-
hood U (blue grid), image R(U) (red), subset of preimage
U ∩ R−1(U) (yellow), and a branch of its stable manifold
W s(p)(black). The intersection of R(U) with W s(p) is also
shown (magenta point). (b) Color plot of 104 initial condi-
tions beginning in Σ0 on a 100 × 100 grid, whose forward
trajectories are integrated for the time interval t ∈ [0, 600].
Color denotes number of intersections with Σ0 with orienta-
tion ż < 0. (c) Black points: P (E(x) ≤ n) vs. n for 104 points
sampling a line segment on Σ+. Blue curve: least squares ex-
ponential fit y = Aebn of black points, with A ≈ 0.9984 and
b ≈ −6.87 × 10−4. (d) Last recorded intersection (blue cir-
cles) of each trajectory defined in (b) with Σ0. The attracting
and repelling spirals (red and black curves, respectively) are
overlaid. Parameter set: ν ≈ 0.00870134, a = −0.3, b = −1,
c = 1.

points x sampling a line segment in Σ+, for a very large
integration time t = 2× 104. The function P (E(x) ≤ n)
computes the proportion of those points in the line seg-
ment having E(x) ≤ n. As the sample size grows large,
P (E(x) ≤ n) converges to the probability that a typi-
cal point x (with respect to Lebesgue measure) lies in
R−n(B0). The resulting points admit a fit by an expo-
nential function of the form Aebx with b < 0, suggesting
that all points eventually escape with exponential decay.
We remind the reader that the one-dimensional approx-
imation R : Σ+ → Σ+ is given in Fig. 2.
Finally, in Fig. 12(d), we plot the last recorded inter-

section with Σ0 of those trajectories that do not tend to Γ
within t = 600. Even with a relatively sparse grid of 104

initial points, these returns sample much of the attract-
ing spiral. Many of the points are not visible at the scale
of the figure because they sample the segment shown in
Fig. 8(d): the penultimate intersections resulted in the
trajectory jumping left to Sa−

ε . If a chaotic invariant
measure exists, we expect that its support on Σ0 will
be well-approximated by the points given in this figure.
In terms of our dynamical partition, the consequence is
that we observe arbitrarily long, nonrepeating symbolic
sequences consisting of trajectory segments with unpre-
dictable numbers of twists as well as types of twists (due
to n, peq, and Γ).

V. CONCLUDING REMARKS

We have highlighted just a few of the broad range
of complex dynamics arising from a tangency of a slow
manifold with an unstable manifold of an equilibrium
point. This organization is made possible using global
bifurcation theory and clever choices of return maps, de-
fined on cross-sections where there is strong contraction
near slow manifolds of the system.

We contributed a topological algorithm which classi-
fies trajectories depending on both the number of turns
they make, and on the direction of the ‘jump’ toward one
of the attracting slow manifolds. This partition gives
us some new insight into the way very different turn-
ing mechanisms—in this case, a saddle-focus equilibrium
point and a folded singularity—interact in a slow-fast
system. We used this partition to describe varying types
of MMOs with oscillations arising from either of these
turning mechanisms, or a combination of both. This de-
mystifies how oscillations of varying types, such as those
seen in Fig. 2(c)-(d), may be concatenated in a construc-
tive way to produce MMOs. However, a shortcoming of
this analysis is that the partition must be redrawn and
reanalyzed for any new parameter set. It is desirable
to find a rigorous model which extends trajectories from
flow maps defined near cylindrical cross-sections14 near
a saddle-focus equilibrium point, to regions near a folded
singularity (one such analysis is provided by Krupa and
Wechselberger13). Such an extension remains elusive and
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is the topic of future work.
We also motivate the study of maps having the topol-

ogy shown in Fig. 2(a)-(b). These maps are distinguished
by two significant features: they admit small disjoint es-
cape subsets, and they may be approximated by uni-
modal maps over a large proportion of their domains.
Sections III B and III C can then be regarded retrospec-
tively as an introduction to the dynamics of these maps,
framed in comparison to the relatively well-studied dy-
namics of unimodal and expansive maps. In particular,
such maps undergo period-doubling cascades (Fig. 4) as
a system parameter is varied. The forward trajectory of
the critical point is also seen to have a transient density
for a range of parameters (Fig. 5).
These results lead us to conjecture that statistical

properties and universal cascades found in some subfam-
ilies of unimodal maps, such as the quadratic family, per-
sist for the family of maps studied in this paper. The ge-
ometric theory of rank-one maps pioneered by Wang and
Young23 is a possible starting point to prove theorems
in this direction. This theory has been used successfully
to identify chaotic attractors in families of slow-fast vec-
tor fields with one fast and two slow variables.24 Their
technique is based upon approximating returns by one-
dimensional maps.
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