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Abstract

The computational singular perturbation (CSP) method is an algo-
rithm which iteratively approximates slow manifolds and fast fibers in
multiple-timescale dynamical systems. Since its inception due to Lam
and Goussis [27], the convergence of the CSP method has been explored
in depth; however, rigorous applications have been confined to the stan-
dard framework, where the separation between ‘slow’ and ‘fast’ variables
is made explicit in the dynamical system. This paper adapts the CSP
method to nonstandard slow-fast systems having a normally hyperbolic
attracting critical manifold. We give new formulas for the CSP method in
this more general context, and provide the first concrete demonstrations
of the method on genuinely nonstandard examples.

1 Introduction

Most systems in nature consist of processes that evolve on disparate timescales
and the observed dynamics in such systems reflect these multiple timescale fea-
tures as well. Mathematical models of such multiple timescale systems are
considered singular perturbation problems with slow-fast (or two timescale)
problems as the most common. Models of homogeneously mixed biochemical
reactions such as substrate-enzyme or ligand-receptor kinetics are prime exam-
ples.

An interesting and pervasive feature of these biochemical reaction systems
is the observed transition from transient fast kinetics to long-term slow kinetics,
wherein the system settles onto a so-called quasi-steady state (QSS). Geomet-
rically, this QSS is perceived as a lower dimensional slow manifold. Identifying
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such an attracting lower dimensional slow manifold provides the means to reduce
the dimension of biochemical reaction systems. Such QSS reduction techniques
are frequently employed in the biochemical literature with Michaelis-Menten-
type laws [15] as prime examples; see e.g. [20].

The mathematical foundation to justify such a QSS reduction is given by
Tikhonov’s [42] respectively Fenichel’s [7] work on normally hyperbolic attract-
ing slow manifolds in singular perturbation problems. Goeke, Noethen, Stiefen-
hofer, and Walcher [10, 36, 41] have provided comprehensive discussions on the
general setup of Fenichel’s geometric singular perturbation theory (GSPT), with
an emphasis on explaining when a QSS reduction is justified or when it leads
to erroneous results.

Schauer and Heinrich [40] explored a homotopy approach to find QSS ap-
proximations in biochemical reaction networks, by formulating a perturbation
problem in terms of a small parameter ε > 0 amplifying the ratio of magnitudes
of slow and fast reaction rates. 1 After using stoichiometry to derive the dy-
namical system from the network, the fast reactions are grouped into a vector
W , and slow into a vector V :

z′ = NW (z) + εRV (z), (1)

with state vector z ∈ Rn, N and R are constant stoichiometric matrices with
full column rank mN ,mR < n, and ε > 0 is the homotopy parameter. With
this splitting, a k-dimensional manifold of stationary states (QSS), 1 ≤ k < n,
can be identified in the singular limit ε→ 0,

S = {z ∈ R
n : NW (z) = 0 ⇒W (z) = 0} . (2)

We emphasize here that the slow-fast splitting (1) is nonstandard from the
point of view of GSPT in the sense that slow-fast reactions are distinguished
rather than slow-fast variables. Nevertheless, the theory of Fenichel [7] still
applies: under the appropriate geometric condition (see Section 2 for details),
an invariant slow manifold Sε perturbs from S for sufficiently small ε > 0.

As a motivating example, consider the following four-dimensional slime mold
cell communication model [9]:









p′

d′

r′

b′









=









2 2
0 1
1 0
−1 0









(

−k5rp2 + k−5b
−k4dp2 + k−4(c− d− r − b)

)

+ ε









k3 − k−3p+ k2Sb
−k1d+ k−1r
k1d− k−1r

0









.(3)

Here, p refers to the concentration of cAMP; d and r represent transmembrane
receptors; and b refers to the bound state of r. The parameters ki ≥ 0 are
constant reaction rates, the parameter c ≥ 0 represents a conserved quantity
that arises from the model reduction of the original five-dimensional model due

1We note that a small perturbation parameter ε > 0 could be properly identified via
dimensional analysis.
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Figure 1: System (3) with ε = 0.01, ki = S = 1, c = 3 and initial condi-
tions: (p, d, r, b) = (1, 0.8, 0.6, 0.4); (a) Time series of the velocities p′, d′, r′, b′

(respectively in red, blue, green, magenta). (b) Projection onto (p, d, r) space
of two trajectory segments together with a portion of the manifold of equilib-
ria defined by (4). Initial conditions: blue, (p, d, r, b) = (1, 0.8, 0.6, 0.4); red,
(p, d, r, b) = (1.2, 0.5, 1.4, 0.4).

to Stiefenhofer [41], and the parameter S ≥ 0 denotes the concentration of
ATP which is assumed to be constant. This system contains a two-dimensional
manifold of equilibria given as a graph

S = {(p, d, r, b) ∈ R
4 : (r, b) = ψ(p, d)} (4)

with

ψ(p, d) =
(

k−5α(p, d), k5p
2α(p, d)

)

α(p, d) =
−k4dp2 + k−4(c− d)

k−4(k5p2 + k−5)
.

(5)

When ε > 0 is sufficiently small, numerical observations reveal the decay of fast
transient motion as trajectories are attracted to a low-dimensional invariant set
Sε near S, as shown in Figure 1. Our objective is to approximate such invariant
sets arbitrarily well.
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1.1 Overview of the computational singular perturbation
(CSP) method

Several algorithmic & computational techniques have been developed to identify
these QSS (i.e. a lower dimensional slow manifold), and to identify the simplified
system underlying long-term stability. Lam and Goussis [27, 28] devised the
computational singular perturbation (CSP) method to identify reduced systems
in chemical kinetics systems. The CSP method is an iterative procedure that
generates a sequence of CSP manifolds and CSP fibers approximating the slow
manifolds and fast fibers of the dynamical system; see Section 3 for details. The
method has since been implemented with tremendous success for a variety of
high-dimensional, nonstandard multiple-timescale problems, across combustion
modelling, chemical reaction networks, and sensitive optimal control [30, 33, 37,
43, 44, 45]. To highlight just one representative example from the vast literature
on numerical applications, CSP has been used in the numerical analysis of a
combustion model to approximate a 12-dimensional invariant manifold in a 49-
dimensional phase space of chemical species [33].

In a complementary direction, substantial theoretical progress has been made
in understanding the convergence and geometrical content of the method. In
1995, Mease [35] used Fenichel theory as a framework to recast the CSP iteration
step as a refinement of basis vectors which block-diagonalises the variational
equations along trajectories lying in the slow invariant manifolds. Mease pointed
out that the CSP method is equipped to deal with slow-fast systems beyond the
standard form, using local coordinate transformations for the Fenichel normal
form in his analysis.

In 2004-2005, Kaper, Kaper, and Zagaris proved convergence in a series of
papers [16, 17] for slow-fast vector fields satisfying a spectral gap condition for
the eigenvalues of the Jacobian of the vector field along an attracting invariant
manifold, giving a rigorous proof for slow-fast systems in the standard form.
In 2005, Valorani and his co-authors observed that the CSP iteration formulas
may be decomposed into a eigenvector approximation scheme plus a piece that
depends upon time derivatives of the Jacobian vector field [45]. By applying
the chain rule, the latter terms are in turn related to second-derivatives of the
Jacobian (with respect to the state space variables), and thus the CSP correction
step inherently uses curvature (and higher-order geometrical characteristics) of
the vector field in its computation. In 2015, Kaper, Kaper, and Zagaris [19]
proved that the CSP iteration commutes with coordinate changes by taking
advantage of the tensorial nature of the iteration. These results clarify that
the rigorous convergence proofs given in their earlier papers do not in fact rely
on the system being cast in the standard form, but rather only require local
splittings of the tangent space along the critical manifold.2

2Mease also pointed out that the CSP method in principle should not even require the
explicit identification of a small parameter ε. Rather, the CSP iteration should converge in
powers of a uniform spectral gap over open sets in the phase space. Convergence proofs by
Kaper, Kaper, and Zagaris [16, 17] refer to an explicit small parameter, and checking the
spectral gap condition is an extremely challenging computational task in high-dimensional
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We couch our current work in this more geometrical aspect of the literature.
Our first goal is to write down refined CSP formulas for nonstandard slow-fast
systems of the form

z′ = H(z, ε) = N(z)f(z) + εG(z, ε) (6)

which includes systems with stoichiometric splittings of the form (1) as a sub-
family. The idea is that the singular limit vector field factorization of (6),
i.e. the vector field h0(z) := H(z, 0) = N(z)f(z), encodes a wealth of geomet-
ric information. Following the spirit of Mease’s work, we assume the existence
of a distinguished small parameter ε > 0 which characterises the ratio of slow
and fast timescales, but we do not retreat to local coordinate representations
or a Fenichel normal form. We instead revisit Fenichel’s original, coordinate-
independent framework. Our analysis culminates in Section 4.1 with a deriva-
tion of computable formulas for the first-order corrections of the slow manifold
and fast fibers of the system in terms of the factorisation in (6).

Planar models of Michaelis-Menten chemical kinetics [15, 17], and the Davis-
Skodje model [4, 19, 45] are popular low-dimensional examples in the standard
form used to demonstrate the CSP step analytically, but there is a dearth of
analytical examples for genuinely nonstandard problems. Part of the difficulty
in the nonstandard case lies in the initialisation of the CSP iteration. Valorani
[45] provided a numerical study of the convergence of the algorithm with respect
to initialisations using eigenbases, standard unit vectors, and randomised unit
vectors in two- and three-dimensional systems. Analytic computation of eigen-
vectors corresponding to slow and fast directions of point-dependent Jacobian
matrices is difficult in all but the simplest cases. We show on the other hand
that the factorisation in (6) provides a natural initialisation which further clari-
fies the CSP iteration (generally presented in terms of Jacobians and coordinate
matrices), and is easier to compute algebraically. In the case of rational vector
fields, this factorisation can often be read off from the form of H(z, 0) or else
computed using polynomial division algorithms from computational algebraic
geometry [10]. Our second major goal is therefore to provide new analytically
tractable, nonstandard examples of the CSP iteration. In Section 5 we apply
these new techniques to a variety of nonstandard case studies of increasing di-
mension from two to four. The first three examples are planar problems of
increasing complexity. The fourth is the aforementioned three-species kinetics
problem derived in [45]. In this example we have the opportunity to augment
their numerical analysis with new formulas for the first-order corrections of the
relevant CSP objects. We finish with the four-dimensional slime cell model (3).

Although this paper is concerned with the CSP method, there are in fact
a variety of iterative schemes to approximate invariant manifolds; the zero-
derivative principle (ZDP) [8], intrinsic low-dimensional manifolds (ILDM) [31,
32], and center manifold normal-form reductions [39] are among a few of these
(chapter 11 in [25] give an overview of the first three methods). Many of these

systems.
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schemes are interconnected; for instance, the CSP and ZDP iterations differ
only by a multiplicative factor [18].

The paper is organised as follows: In Sec. 2, we describe a general framework
for nonstandard slow-fast systems. In Sec. 3 we define the two-step CSP update.
Our main results are provided in Secs. 4 and 5: we give specific formulas for
initializing the CSP method in the nonstandard context, study the output of
the first update carefully, and then give examples demonstrating these formulas.
We conclude in Sec. 6 by highlighting some fruitful new connections between
the CSP method and the factorization given in the second section. We also
provide an appendix (App. A), which expands on the framework underlying the
CSP update step.

2 Nonstandard slow-fast dynamical systems

We begin by giving an abbreviated treatment of a general framework for non-
standard slow-fast systems. Much of this material in fact appears in Fenichel’s
seminal work on GSPT [7]; see also [36, 10]. This approach has been further
developed by Wechselberger [47] and extends the framework to loss of normal
hyperbolicity.

We are interested in two-timescale (or slow-fast) dynamical systems of the
form (6), which we restate here for convenience:

z′ =
dz

dt
= H(z, ε) = N(z)f(z) + εG(z, ε) , (7)

with state variable z ∈ Rn, n× (n− k) matrix N(z) formed by column vectors
N i(z) = (N i

1(z), . . . , N
i
n(z))

⊤ with sufficiently smooth functions N i : Rn → R,
i = 1, . . . , n − k, f(z) = (f1(z), . . . , fn−k(z))

⊤ a column vector of sufficiently
smooth functions fi : R

n → R, i = 1, . . . , n−k, G(z, ε) = (G1(z, ε), . . . , Gn(z, ε))
⊤

a column vector of sufficiently smooth functions Gi : R
n → R, i = 1, . . . , n, and

ε≪ 1 characterizes the ratio of timescales in the system.

Definition 2.1 Let S0 denote the set of equilibria of system (7) in the singu-
lar limit ε → 0. If there exists a subset S ⊆ S0 which forms a k-dimensional
differentiable manifold of equilibria with 1 ≤ k < n, then system (7) defines a
singular perturbation problem.

Assumption 2.1 System (7) is a singular perturbation problem with a single
subset S ⊆ S0,

S = {z ∈ R
n : f(z) = 0} , (8)

which forms a k-dimensional differentiable manifold of equilibria, 1 ≤ k < n,
called the critical manifold.
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Assumption 2.2 In system (7), the matrix N(z) has full (column) rank for
all z ∈ S.

Next consider system (7), rescaled from the fast timescale t to the slow timescale
τ = εt:

ż =
dz

dτ
=

1

ε
H(z, ε) =

1

ε
N(z)f(z) +G(z, ε), (9)

Systems (7) and (9) are equivalent when ε > 0 but their singular limits ε → 0
are not. In fact, they carry complementary, lower dimensional information,
and it is a cornerstone of GSPT to concatenate the information from these two
limiting problems to deduce the dynamics of the full system (7) respectively (9).

2.1 The layer problem

We focus first on system (7) evolving on the fast time scale t.

Definition 2.2 The layer problem of system (7) is given by the formal limit
ε→ 0:

z′ = H(z, 0) = N(z)f(z). (10)

Under Assumption 2.1, the set S forms a k-dimensional manifold of equilibria
of the layer problem. Hence, the Jacobian Dh|S along S has k trivial zero eigen-
values and (n− k) nontrivial eigenvalues.

Definition 2.3 A k-dimensional critical manifold S is called normally hyper-
bolic if the (n− k) nontrivial eigenvalues of the Jacobian Dh|S = (NDf)|S are
bounded away from the imaginary axis.

The existence of a normally hyperbolic manifold implies the following split-
ting:

TzR
n = TzS ⊕Nz , ∀z ∈ S (11)

where TzS denotes the tangent space of the critical manifold S at z, coinciding
with the kernel of the linear map DH(z, 0), and Nz is the unique complement of
the splitting identified with the quotient space TzR

n/TzS. We call Nz the linear
fast fiber with basepoint z ∈ S. Repeating this construction across all points of S,
we obtain the tangent bundle TS = ∪z∈STzS of S, and the transverse linear fast
fiber bundle N = ∪z∈SNz . This splitting induces unique projection operators
onto the tangent bundle TS and the linear fast fibre bundle N as follows:

ΠS : TS ⊕N → TS. (12)

ΠN : TS ⊕N → N = I −ΠS . (13)
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Lemma 1 At any point z ∈ S of a normally hyperbolic manifold S, the rows
of Df(z) form a basis of TzS

⊥ and the columns of N(z) form a basis of Nz.

Proof. The manifold S is the zero level set of f(z) which forms a k-
dimensional manifold, i.e. Df(z)|S has full row rank (n − k) for any z ∈ S.
Thus the rows of Df(z) form a basis of the orthogonal complement of TzS.

Since S is normally hyperbolic, we have DH(z, 0) has rank (n − k) which
implies kerDH(z, 0) = TzS at points z ∈ S. Under Assumption 2.2, N(z) has
full column rank (n−k). Thus the column spaces of DH(z, 0) and N(z) coincide
at points z ∈ S and, hence, the columns of N(z) form a basis of Nz. �

Lemma 2 Let S be a normally hyperbolic manifold. Then the (n−k)× (n−k)
square matrix DfN |S is regular, and its eigenvalues are equal to the set of non-
trivial eigenvalues of Dh|S.

Proof. Let the linear operator DH(z, 0)|S act on the basis of the invariant
subset N , i.e.

DH(z, 0)N(z)|S = (N(z)Df(z))N(z)|S = N(z)(Df(z)N(z))|S.

By Lemma 1, the (n− k)× (n− k) square matrix DfN |S is necessarily a regu-
lar matrix with (n − k) nonzero eigenvalues which coincide with the nontrivial
eigenvalues of DH(z, 0)|S. Note, if p(z) ∈ Rn−k is an eigenvector of DfN |S
with eigenvalue µ(z) then N(z)p(z) ∈ Rn is the corresponding eigenvector of
DH(z, 0) with the same eigenvalue. �

Assumption 2.3 The k-dimensional critical manifold S of system (7) is nor-
mally hyperbolic and attracting, i.e. all (n − k) nontrivial eigenvalues have
negative real part.

Remark 1 System (3) satisfies Assumptions 2.1–2.3. A rich source of exam-
ples comes from chemical reaction networks; Schauer and Heinrich [40] provide
a derivation of such models with the goal of identifying quasi-steady state ap-
proximations in biochemical reaction networks.

Nevertheless, it is unclear whether general techniques exist to compute such
factorizations in a typical slow-fast system. In the case of polynomial vector
fields, Goeke and Walcher [10] have used division algorithms for algebraic vari-
eties to factor H(z, 0).

Remark 2 In this paper we do not concern ourselves with singularities of
H(z, 0) outside of the critical manifold S; we only require the local geometric
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Figure 2: A sketch of the projectors ΠS (12) and ΠN (13) defined at a point z ∈
S. The invariant subspaces TzS and Nz are illustrated by red and blue dashed
lines, respectively, together with an arbitrary vector v ∈ TzR

n. The dotted lines
are parallel translates of these subspaces along the oblique projections ΠSv and
ΠNv.

structure provided by the differentiable manifold and transverse fibers in the pro-
ceeding arguments. A simple example of a system having an isolated singularity
as well as a critical manifold is given in Sec. 5.1.

2.2 The reduced problem

Now consider system (9) evolving on the slow timescale τ = εt. The singu-
lar limit ε → 0 of system (9) requires more care, i.e. this limit will only be
well-defined provided that we restrict the phase space to S and that G(z, 0) is
restricted to the tangent bundle TS. The projection operator ΠS (12) allows us
to formulate this limit.

Definition 2.4 The reduced problem of system (9) is

ż =
d

dτ
z = ΠS ∂

∂ε
H(z, ε)

∣

∣

∣

∣

ε=0

= ΠSG(z, 0). (14)
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Definition 2.5 Consider the splitting Rn = V ⊕ W, where V has dimension
n − k and W has dimension k. The oblique projection of a vector p = x + y,
x ∈ V and y ∈ W , onto the subspace V parallel toW is a linear map ΠV = (ΠV)2

satisfying ΠV(p) = x.
Suppose V (resp. U) is an n× (n− k) matrix whose column vectors span V

(resp. W⊥). Then it can be shown that ΠV has the following matrix represen-
tation:

ΠV = V (U⊤V )−1U⊤. (15)

The (complementary) oblique projection onto the subspace W parallel to V is
given by

ΠW = I −ΠV . (16)

In the present context, the splitting TRn = N ⊕ TS induces an oblique projec-
tion onto the tangent bundle of the critical manifold, parallel to the fast fibers
(see Fig. 2). Lemma 1 gives us a matrix representation using the matrices N
and Df :

ΠS = I −N(DfN)−1Df. (17)

The complementary oblique projection onto the fast fibers is denoted ΠN :=
I −ΠS . By Lemma 2, the matrix DfN is regular and, hence, the inverse is well
defined. Equivalent projection formulas appear in [7] and [10].

Remark 3 It is easily shown that standard singular perturbation problems are
a special case of a nonstandard problem (7). Indeed, select

N =

(

Ok,n−k

In−k,n−k

)

(18)

and describe the variables and vector field in terms of components z = (x, y) ∈
Rk × R(n−k) and G(x, y, ε) = (g(x, y, ε), f̃(x, y, ε)). Then z′ = N(z)f(z) +
εG(z, ε) gives

x′ = εg(x, y, ε)

y′ = f(x, y, ε) + εf̃(x, y, ε) ,
(19)

which is a standard singular perturbation problem. From (19) we observe that
x lists the k slow variables and y lists the (n− k) fast variables. These systems
lie in contrast to the nonstandard case, where one cannot expect such a trivial
factorization (18) to exist globally.

2.3 Fenichel Theory

In the case of normally hyperbolic critical manifolds, QSS reductions onto a
slow invariant manifold are justified by the following theorem.



CSP IN NONSTANDARD SLOW-FAST SYSTEMS 11

Theorem 1 (Fenichel’s Theorem [7, 14, 25]) Given the system (7) with a
Cr-smooth vector field and a compact normally hyperbolic critical manifold, the
following hold for ε > 0 sufficiently small:

• There exists a locally invariant Cr-smooth, normally hyperbolic slow man-
ifold Sε that is Cr O(ε)-close to S.

• The flow on Sε converges to the reduced flow on S as ε→ 0.

• There are Cr-smooth locally invariant stable and unstable manifolds, Fs(Sε)
and Fu(Sε).

• These manifolds admit nonlinear, Cr−1-smooth foliations {Fs(p) : p ∈ Sε}
resp. {Fu(p) : p ∈ Sε}. Furthermore, these families are positively (resp.
negatively) invariant on fibers; i.e. if φt is the time-t ≥ 0 flow map of (7)
and if p, φt(p) ∈ Sε, then

φt(F
s(p)) ⊆ Fs(φt(p)).

An analogous statement holds for the fibers Fu(p), with p ∈ Sε.

• There exist constants C, λ > 0 such that if q ∈ Fs(p), then for t ≥ 0 we
have

||φt(p)− φt(q)|| < Ce−λt.

Analogous rate estimates hold for the fibers Fu(p), with p ∈ Sε.

The invariant slow manifold Sε and its invariant nonlinear foliation Fε (which
split into the sub-foliations given in the theorem above) organise the dynamics
of the full system: trajectories perturb from concatenated orbits of the layer and
reduced problems under the appropriate transversality conditions. In analogy
to the ε = 0 setting, we denote the linear fast fiber at basepoint p ∈ Sε by Nε,p

and the linear fast fiber bundle by Nε = ∪p∈Sε
Nε,p.

3 The CSP iteration

Suppose that the invariant slow manifold Sε of a nonstandard slow-fast system
(7) is (locally) given by the graph of a function y = hε(x) with hε : R

k → Rn−k.
We express hε(x) as an asymptotic series in ε:

y = hε(x) = h0(x) + εh1(x) + ε2h2(x) + · · ·+ εjhj(x) +O(εj+1). (20)

The terms hj(x) may be obtained reinserting this series into (7) and match-
ing coefficients in orders of ε. The CSP method adopts a different, iterative
approach to efficiently compute not only the terms hj(x), but also a similar
asymptotic approximation to the linear fast fibers transverse to the slow man-
ifold. The motivating idea is to understand how the variational equation of a
dynamical system is affected by changes in basis.



CSP IN NONSTANDARD SLOW-FAST SYSTEMS 12

3.1 Geometric framework of the CSP method

Consider a smooth vector field H(z), to which we append the variational equa-
tion to produce the dynamical system on the tangent bundle:

z′ = H(z) (21)

H ′ = DH(z)H(z).

Under some arbitrarily chosen splitting z = (x, y), where x ∈ R
n−k and y ∈ R

k,
we can write the variational equation in block component form:

(

H ′
x

H ′
y

)

=

(

DxHx DyHx

DxHy DyHy

)(

Hx

Hy

)

. (22)

Now suppose A(z) = [Af (z) As(z)] is a smooth, regular n× n matrix for all

z ∈ S with B(z) =

(

Bs⊥(z)
Bf⊥(z)

)

its dual. Here, the first and second block columns

of A, denoted Af and As, are of sizes n×(n−k) and n×k, respectively; similarly,
the first and second block rows Bs⊥ and Bf⊥ have sizes (n− k)× n and k × n,
respectively. The vector field H(z) expressed in this new basis is given by

g(z) = B(z)H(z). (23)

Definition 3.1 For a smooth n ×m matrix function X and a smooth vector
field H, [X,H ] is denoted the Lie bracket of X and H and defined as the n×m
matrix whose ith column is

[X,H ]i = [Xi, H ]

= (DH)Xi − (DXi)H,

where i = 1, · · · ,m and Ai refers to the ith column of A.

It can be shown that the variational equation of the transformed vector field
can be written compactly in the form

g′ = Λ(A,B,H)g , (24)

where the nonlinear operator Λ(A,B,H) has the algebraic structure of a Lie
bracket:

Λ(A,B,H) = B[A,H ] ; (25)

see the appendix (Sec. A.1) for a derivation of this result. The operator Λ can
be written in block-component form:

Λ =

(

Λff Λfs

Λsf Λss

)

=

(

Bs⊥[Af , H ] Bs⊥[As, H ]
Bf⊥[Af , H ] Bf⊥[As, H ]

)

. (26)
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The key insight is that in the presence of a k-dimensional invariant manifold M
and corresponding transverse linear fiber bundle N , the vector field H may be
expressed in a clever choice of basis A(z) and dual B(z) which block-diagonalizes
Λ. As a consequence, the invariant manifold M and the linear fiber bundle N
are easily characterized in terms of this basis as follows:

M = {z ∈ R
n : Bs⊥(z)H(z) = 0}, (27)

N =
⋃

p∈M

Np =
⋃

p∈M

Col(Af (p)) ; (28)

see the appendix (Sec. A.2) for details. This formalism applies directly to
the case of an invariant slow manifold M = Sε and its accompanying linear
fast fiber bundle N = Nε, as defined by Fenichel’s theorem (Sec. 2.3). The
characterizations (27)–(28) then state that Sε is defined by the locus of points
Bs⊥(z)H(z) = 0 where the components of the vector field H(z) lying in the
direction of the linear fast fibers vanish, and that the linear fast fibers Np at
basepoints p ∈ Sε are spanned by the columns of the block component Af (p).

3.2 CSP objects

The CSP iteration acts on a suitably initialised (point-dependent) basis ma-
trix A(0)(z) and dual B(0)(z), producing a sequence {(A(j)(z), B(j)(z))}∞j=0 of
successively refined bases. We initialise with the pair

A(0) =
(

A
(0)
f A

(0)
s

)

(29)

B(0) =

(

B
(0)
s⊥

B
(0)
f⊥

)

.

The sequence {(A(j)(z), B(j)(z))}∞j=0 in turn defines a sequence of updates

{Λ(j)}∞j=0 to the Λ operator:

Λ(j) = B(j)[A(j), H ]. (30)

These approximate operators may be written in block components in analogy
to (26). Motivated by the characterizations of the invariant manifold and fast
fibers provided in Eqs. (27)–(28), we define the following approximating objects:

Definition 3.2 The CSP manifold of order 0 is the level set

K(0) = {(x, y) ∈ R
n : B

(0)
s⊥ (x, y, ε)H(x, y, ε) = On−k,1}. (31)

For integers j ≥ 1, the CSP manifold of order j, denoted K(j), is

K(j) = {(x, y) ∈ R
n : B

(j)
s⊥(x, ψ(j−1)(x, ε), ε)H(x, y, ε) = On−k,1}, (32)

where y = ψ(j−1)(x, ε) is a graph of K(j−1).
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Definition 3.3 For j ≥ 0 and p ∈ K(j), the CSP fiber of order j is the subspace

L(j)(p) = Col A
(j)
f (p, ε). (33)

The CSP fiber bundle of order j is the corresponding vector bundle

L(j) =
⋃

p∈K(j)

L(j)
ε (p). (34)

Remark 4 The convergence of the CSP manifolds and fiber bundles to the in-
variant slow manifold and fast fiber bundle of system (7) depends on the choice
of iteration step, as shown in Sec. 3.4.

3.3 One-step and two-step CSP updates

There are two commonly-used variants of the CSP iteration. We will only apply
the two-step method in this paper, but it is instructive to introduce the simpler
one-step method to clarify the relationship between these iterations and the
CSP objects (32)–(33).

Both methods use near-identity transformations in the update step, i.e. mul-
tiplication by matrices of the form I±U and I±L, where I is the identity matrix,
and U and L are nilpotent matrices of the form

U (j) =

(

On−k,n−k Ũ (j)

Ok,n−k Ok,k

)

(35)

L(j) =

(

On−k,n−k On−k,k

L̃(j) Ok,k

)

.

The block components Ũ (j) and L̃(j), of respective sizes (n−k)×k and k× (n−
k), are defined by the constraint that the CSP manifolds and fibers converge
asymptotically to the slow manifold and linear fast fibers; see Sec. 3.4. Near-
identity update matrices are computationally easy to invert. In particular, we
obtain efficient update rules for the dual basis B(j), as shown in the following
two methods.

3.3.1 One-step CSP method

The one-step CSP method is given by the iteration rule

A(j+1) = A(j)(I − U (j)) =
(

A
(j)
f A

(j)
s −A

(j)
f Ũ (j)

)

B(j+1) = (I + U (j))B(j) =

(

B
(j)
s⊥ + L̃(j)B

(j)
f⊥

B
(j)
f⊥

)

.
(36)
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The one-step CSP method only updates ‘half’ of the basis. This update is suffi-
cient if we are interested in computing only the CSP manifolds (32). If we wish
to approximate the fast fibers to the invariant manifold in tandem, we must
update the remaining blocks of the basis and dual basis matrices. This update
is provided by the two-step CSP method.

3.3.2 Two-step CSP method

The two-step CSP method is given by the iteration rule

A(j+1) = A(j)(I − U (j))(I + L(j))

=
(

A
(j)
f (I − Ũ (j)L̃(j)) +A

(j)
s L̃(j) A

(j)
s −A

(j)
f Ũ (j)

)

B(j+1) = (I − L(j))(I + U (j))B(j),

=

(

B
(j)
s⊥ + Ũ (j)B

(j)
f⊥

(I − L̃(j)Ũ (j))B
(j)
f⊥ − L̃(j)B

(j)
s⊥

)

.

(37)

3.4 Convergence

Suppose that after j iterates of the CSP two-step method, the CSP manifold of
order j defined by (32) is locally expressed as a graph y = ψ(j)(x, ε) and then
expanded as an asymptotic series in ε:

y = ψ(j)(x, ε) = ψ
(j)
0 (x) + εψ

(j)
1 (x) + ε2ψ

(j)
2 (x) + · · · . (38)

When the update terms in the near-identity transformations (37) are defined
appropriately, Kaper, Kaper, and Zagaris [16] demonstrated convergence of the
CSP manifold to the invariant slow manifold of Fenichel’s theory (as described
in Sec. 2.3), in the following sense.

Theorem 2 (Convergence of CSP manifolds [16]) Suppose the leading-
order term of the graph of K(0), denoted y = ψ(0)(x, ε), agrees with the graph of
the critical manifold y = h0(x) under a local choice of coordinates. Then using
the one-step or two-step CSP update rule and for j fixed, we have

y = ψ(j)(x, ε) =

j
∑

i=0

εihi(x) +O(εj+1)

when ε > 0 is sufficiently small, where ψ(j) is the graph of K(j) with asymp-
totic series expansion (38) and y = h(x) =

∑∞

j=0 hj(x) is the asymptotic series
expansion of the graph of Sε.

This theorem states if the CSP two-step method is initialised appropriately,

then for pairs of indices 0 ≤ i ≤ j we have ψ
(j)
i (x) = hi(x). This justifies the
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nomenclature ‘CSP manifold of order j’: the set K(j) agrees with Sε up to order
j terms in the asymptotic expansion.

An analogous convergence statement can be given for the CSP fiber bundle
(34):

Theorem 3 (Convergence of CSP fibers [17]) Fix j ≥ 0 and let K(j) be
given locally by the graph y = ψ(j)(x) for x ∈ Rk and y ∈ Rn−k. Then given
the basepoint (x, ψ(j)(x)) on K(j) (resp. (x, hε(x)) on Sε), the asymptotic ex-
pansions of L(j)(x, ψ(j)(x)) (as defined in (33)) and Nε(x, h(x)) agree up to
and including terms of O(εj). Thus, the CSP fast fiber bundle L(j) is an O(εj)
approximation to the fast fiber bundle Nε.

Theorems 2–3 hold when the near-identity updates in (35) are defined as
follows:

Ũ (j) = (Λ
(j)
ff )

−1Λ
(j)
fs (39)

L̃(j) = Λ
(j)
sf (Λ

(j)
ff )

−1.

With this choice of update step, the CSP two-step method simultaneously
block-diagonalizes the CSP operator Λ(j) (as defined in (30)) in discrete steps
as follows [17]:

Lemma 3 For j = 0, 1, · · · , the CSP two-step method (37) provides the asymp-
totic estimates

Λ(j) =

(

Λff,0 +O(ε) O(εj)
O(εj) O(ε)

)

,

where Λ(j) is evaluated on K(j).

4 Nonstandard CSP updates

We remind the reader that rigorous convergence proofs for the standard form are
provided in [16, 17], and the CSP iteration commutes with coordinate changes
[19]. We can now proceed to describe the CSP update step for nonstandard
slow-fast systems (7) satisfying Assumptions 2.1–2.3. The key is that bases for
the fast and slow subspaces can be ‘read off’ using the factorization H(z, 0) =
N(z)f(z), providing a natural initial condition for the iteration. By Lemma 1,
the columns of N(z) span the linear fast fiber with basepoint z ∈ S, and the
columns of Df(z)⊤ span TzS

⊥. Thus,

A(0) =
(

N (Df⊤)⊥
)

(40a)

B(0) =

(

Q1Df
Q2(N

⊥)⊤

)

, (40b)
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where the notation P⊥ refers to a matrix whose columns form a basis to the
subspace orthogonal to the column space of the matrix P , and the regular
prefactors

Q1 = (DfN)−1

Q2 = ((N⊥)⊤(Df⊤)⊥)−1
(41)

in the block rows (which are well-defined by Lemma 1) have been selected
to normalize the block diagonal components in the product B(0)A(0) to the
identity. With this initialization, the leading-order approximation K(0) of the
CSP manifold defined in (31) can be computed:

B
(0)
s⊥H = 0

(DfN)−1Df(Nf + εG) = 0

f + ε(DfN)−1(DfG) = 0

f = −ε(DfN)−1(DfG). (42)

This level set implicitly defines the graph y = ψ(0)(x, ε). On this graph, we
expand both sides of this equation in powers of ε. The leading-order O(ε0)
coefficient is

f(x, ψ0(x), 0) = 0 , (43)

which matches the definition of the critical manifold S as the leading-order part

of the asymptotic series of Sε, f(x, h0(x), 0) = 0; thus, ψ
(0)
0 (x) = h0(x).

The four block components of the operator Λ(0) = B(0)[A(0), H ] can be
computed explicitly in terms of the components N, f, and G in the vector field
H . We list them compactly (compare with (26)):

Λ
(0)
ff = DfN + εQ1Df [N,G] (44a)

Λ
(0)
fs = εQ1Df([(Df

⊤)⊥, G]− [(Df⊤)⊥, N ]Q1DfG) (44b)

Λ
(0)
sf = εQ2(N

⊥)⊤[N,G] (44c)

Λ(0)
ss = εQ2(N

⊥)⊤([(Df⊤)⊥, G]− ([(Df⊤)⊥, N ]Q1DfG). (44d)

The tensorial nature of the CSP update step was identified and explored in
[19]. In our setting, tensor properties of some of the terms such as DN play
a significant role in simplifying the formulas for Λ(0). These calculations are
presented in the Appendix A.3.

The vector function f is O(ε) on K(0) by (42); therefore, the latter three
block components are at most O(ε) as well. This in turn implies that the
update blocks Ũ (0) and L̃(0) defined in (39) are both O(ε) on this set. After one
application of the CSP two-step update (37), the updated bases A(1) and B(1)



CSP IN NONSTANDARD SLOW-FAST SYSTEMS 18

are

A(1) =
(

A
(0)
f +A

(0)
s L̃(0) −A

(0)
f Ũ (0)L̃(0) −A

(0)
f Ũ (0) +A

(0)
s

)

(45a)

B(1) =

(

B
(0)
s⊥ + Ũ (0)B

(0)
f⊥

B
(0)
f⊥ − L̃(0)B

(0)
s⊥ − L̃(0)Ũ (0)B

(0)
f⊥

)

. (45b)

The block components L̃(0) and Ũ (0) each introduce O(ε1) perturbations of the
initial block columns of A(0) (respectively block rows of B(0)).

4.1 First-order corrections of the slow manifold and fast
fibers

We now demonstrate the computability of the CSP formulas with the following
two lemmas, which give new formulas for the first-order corrections of Sε and
Nε, respectively.

Lemma 4 Assume the conditions of Fenichel’s theorem (Theorem 1) are satis-
fied for a sufficiently smooth family of vector fields of the form (7), and suppose
the slow manifold Sε is written locally as a graph

y = h(x, ε) = h0(x) + εh1(x) +O(x2)

with Dyf |S having full rank. Then the first-order correction term is given
by the computable formula

h1(x) = −(Dyf)
−1(DfN)−1(DfG) (46)

when ε > 0 is sufficiently small.

Proof. Our objective is to compute the ψ
(1)
1 term of the first CSP update in

terms of N, f, and G. The Theorem 2 allows us to equate this term with the
first-order correction of the asymptotic expansion of Sε. The first update of the
CSP manifold K(1) is defined as follows; see (32):

B
(1)
s⊥ (x, ψ(0)(x, ε), ε)H(x, y, ε) = 0

(Df0N0)
−1Df0(Nf + εG) + Λ−1

ff,0Λfs,0Bf⊥,0(Nf + εG) = 0.

In this equation and the following, we use the additional subscript ’0’ to refer to
those quantities that are computed on points (x, ψ(0)(x)) ∈ K(0). We compute
the order O(ε1) coefficient of the asymptotic series assuming the graph form
y = ψ(1)(x, ε) where the leading order coefficient is defined by f0 = 0 ; see (43):

(Df0N0)
−1Df0(N0f0 + ε(N0Dyf0ψ

(1)
1 +G0))+

Λ−1
ff,0Λfs,0Bf⊥,0(N0f0 + ε(N0Dyf0ψ

(1)
1 +G0)) +O(ε2) = 0.
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We first evaluate the asymptotics of the second line. We have

Λ−1
ff,0 = (Df0N0)

−1 +O(ε)

Λfs,0 = O(ε)

N0f0 + ε(N0Dyf0ψ
(1)
1 +G0) = −εN0(Df0N0)

−1Df0G0 + ε(N0Dyf0ψ
(1)
1 +G0)

= O(ε).

Therefore, the second line is at most O(ε2) on K(0). The remaining O(ε1)
terms give

εDyf0ψ
(1)
1 + ε(Df0N0)

−1Df0G0 = 0

ψ
(1)
1 = −(Dyf0)

−1(Df0N0)
−1(Df0G0).

By Theorem 2, ψ
(1)
1 = h1. �

Remark 5 This result matches a recent result due to Wechselberger [47] for
the first-order correction of Sε in the nonstandard case.

Lemma 5 Assume the conditions for Fenichel’s theorem (1) are satisfied for a
sufficiently smooth family of vector fields of the form (7), so that the linear fast
fiber Nε(x, hε(x)) at basepoint (x, hε(x)) ∈ Sε admits a local expansion as an
asymptotic series of the form

Nε(x, hε(x)) = span(k0(x) + εk1(x) +O(ε2)).

Then k0(x) = N(x, h0(x)) and

k1(x) = ΠS [N,G](DfN)−1. (47)

Proof. In analogy to the previous lemma, we take advantage of the conver-
gence of the CSP iteration to produce a formula for the CSP fiber of order one,
and then we apply a slightly stronger variant of the convergence theorem for

linear fast fibers (Theorem 3). Let L(1) = Col(A
(1)
f ), defined by (37). We have

A
(1)
f = A

(0)
f (I − Ũ (0)L̃(0)) +A(0)

s L̃(0)

= N +A(0)
s L̃(0) +O(ε2),

where the term A
(0)
s L̃(0) can be written out explicitly by using the formulas

(44a) and (44b) for the block components of Λ in the update formula (39):

A(0)
s L̃(0) = Π⊥(ε[N,G])(Λ

(0)
ff )

−1,
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where

Π⊥ := (Df⊤)⊥((N⊥)⊤(Df⊤)⊥)−1(N⊥)⊤.

A careful comparison to the matrix representation of oblique projection (Def-
inition 2.5) reveals that in fact Π⊥ = ΠS to leading order, when we evaluate this
expression on the set K(0). We also have f = −ε(Df0N0)

−1(Df0G0) + O(ε2)

and (Λ
(0)
ff )

−1 = (Df0N0)
−1+O(ε2) on K(0) (where we are using the 0-subscript

convention in the previous lemma).
The CSP fiber L(1) is defined on its corresponding CSP manifold K(1) by Def.

(33). Theorem 3 can be improved slightly such that the fiber approximation is

still O(εj)-accurate if A
(j)
f is evaluated on K(j−1) (see Sec. 3.5 in [17]). The

first-order corrections of the linear fast fibers and the CSP fibers are therefore
equal. �

Remark 6 The formula in the preceding lemma simplifies to k1(x) = ΠSDGN(DfN)−1

when the linear fast fibers along the critical manifold are point-independent.
This is convenient for chemical network applications admitting factorisations
from stoichiometry. This also provides a new formula for the fast-fiber approx-
imation in standard slow-fast systems.

Remark 7 Lemmas (46)–(46) should be considered in the context of previous
work which interprets the CSP step in terms of curvature and higher-order geo-
metric quantities [45]. For instance, the Lie bracket [N,G] measures the extent
to which the flows generated by the vector fields Ni and G fail to commute locally
(for each i = 1, · · · , n− k) [29], and the first-order correction to the fast fibers
records the projection of this bracket onto TS.

5 Examples

We now demonstrate the two-step CSP method in several nonstandard exam-
ples. Our list of systems increases in complexity: first we consider a planar
system where the slow manifold is equal to the critical manifold and the fast
fiber bundle remains unchanged. Second, we consider a planar system where the
slow manifold is equal to the critical manifold but the fast fiber bundle perturbs
from the ε = 0 case. Third, we consider a planar system where both the man-
ifold and fiber updates are nontrivial. Fourth, we revisit a three-dimensional
system from the literature where the slow manifold is one-dimensional, and also
contains a point where normal hyperbolicity is lost. Finally, we consider the
four-dimensional system (3) discussed in the introduction.
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Figure 3: Several trajectories (black solid curves) plotted for system (48) (with
ε = 0.1). Portions of the fast fibers given in (51) are given by dashed lines. The
forward invariance of the family is also illustrated: trajectories on the red fiber
Fε(p(π/4)) are flowed forward for a time t = 2. These trajectories all end on
the blue fiber Fε(p(π/4+ 2ε)). Trajectories computed using a Dormand-Prince
ODE solver in MATLAB R2018a [34].

5.1 Trivial updates of the slow manifold and fast fibers

Consider the following two-dimensional nonstandard system:

(

x′

y′

)

=

(

x
y

)

(1 − x2 − y2) + ε

(

−y
x

)

. (48)

The critical manifold S = {x2 + y2 = 1} is a circle. The Jacobian evaluated
along S is

DH |S =

(

−2x2 −2xy
−2xy −2y2

)∣

∣

∣

∣

S

, (49)

with one trivial zero eigenvalue and one negative eigenvalue λ = −2 for all
(x, y) ∈ S, implying that the critical manifold S is attracting and normally
hyperbolic. Thus, Assumptions 2.1–2.3 are satisfied. Note that the origin is
an isolated singularity of N(z), where f(z) 6= 0, but we do not consider this
singularity in the CSP iteration (see Remark 2).

When ε is small and positive, there is a clear separation between slow motion
along S versus fast motion toward S. The dynamics is made obvious if we write
the system in polar coordinates and plot a graph of representative trajectories
(Fig. 3):

r′ = r(1 − r2)

θ′ = ε.
(50)
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The coordinate representation (50) decomposes the system into two inde-
pendent ODEs. The invariant manifold r = 1, which is independent of ε, can
be read off from the first equation of (50). Thus, Sε = S. We can also deter-
mine that the (nonlinear) fast fiber bundle Fε is foliated by the family of rays
extending from the origin, with basepoints on the circle:

Fε(p(θ0)) = {(r, θ) : 0 < r <∞, θ = θ0}, p(θ0) = (1, θ0) ∈ Sε

Fε =
⋃

θ0∈[0,2π)

Fε(p(θ0)). (51)

Note that the nonlinear and linear fast fiber bundles coincide in this example:
Fε = Nε. The fast fiber bundle is invariant as a family: for t ∈ R, the fiber
Fε(p(θ0)) is mapped to Fε(p(θ0 + εt)) under the time t flow map. Furthermore,
exponential contraction of the rays toward Sε is governed by the equation r′ =
r(1 − r2). Compare these facts about the nonlinear fast fibers with Fenichel’s
theorem, Sec. 2.3. This behavior is similarly independent of the value of ε > 0.

We initialize the CSP two-step method using (40):

A(0) =
(

N (Df⊤)⊥
)

=

(

x 2y
y −2x

)

(52a)

B(0) =
1

2(x2 + y2)

(

2x 2y
y −x

)

. (52b)

We begin by computing the initial CSP manifold K(0) (see (31)). We compute

B
(0)
s⊥H =

1

2(x2 + y2)

(

2x 2y
)

((

x
y

)

(1 − x2 − y2) + ε

(

−y
x

))

(53)

= 1− x2 − y2 = 0,

and so

K(0) = {(x, y) : x2 + y2 = 1} = S.

We have

DAf |S =

(

1 0
0 1

)

DAs|S =

(

0 2
−2 0

)

DH |S =

(

−2x2 −2xy − ε
−2xy + ε −2y2

)

.

With this information, Λ(0) (defined in (30)) becomes

Λ(0)|S =

(

−2 0
0 0

)

. (54)
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Using (39), we find that Ũ (0) = 0 and L̃(0) = 0.
The triviality of the updates implies that the CSP manifolds and fibers

((32)–(33)) are

K(j) = {(x, y) ∈ R
2 : x2 + y2 = 1} = S

L(j)(p) = {cp : c ∈ R}, p ∈ S

for j = 0, 1, 2, · · · .

5.2 Trivial updates of the slow manifold; nontrivial up-
dates of the fast fibers

We now consider a variant of the previous system, where we modify the first
component of G(x, y):

(

x′

y′

)

=

(

x
y

)

(1− x2 − y2) + ε

(

−y + y2(1 − x2 − y2)
x

)

. (55)

We still have S = {(x, y) : x2 + y2 = 1}, and it is easy to check that this is also
the invariant slow manifold for ε > 0: for p = (x, y) ∈ S we have

H(x, y, ε) = N(x, y, ε)f(x, y) + εG(x, y, ε)

= εG(x, y, ε)

=

(

−εy
εx

)

,

so that H(p, ε) ∈ TpS. Thus, S = Sε as before. In this modified system,
however, the linear fast fiber Nε,p will not be orthogonal to TpSε at points
p ∈ Sε.

The CSP step is initialized as usual with (40). The basis matrices are iden-
tical to (52a)–(52b) since we have not modified N(z) or f(z). From (30), the
initial operator Λ(0) is (compare (54))

Λ(0)|S =

(

−2− 2εxy2 0
εy3 0

)

.

By definition (39), the update term Ũ (0) is trivial since Λ
(0)
fs = 0; on the other

hand, the update quantity L̃(0) may give a nontrivial first-order correction to
the fast fiber. The first column (resp. first row) of the updated basis matrix
A(1) (resp. B(1)) are

A
(1)
f |S =

(

x+ y4ε
y − xy3ε

)

+O(ε2)

B
(1)
s⊥ |S =

(

x y
)

.
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Applying the definitions (32)–(33), the updated CSP objects are

K(1) = {B
(1)
s⊥H = 0}

= {(x, y) ∈ R
2 : x2 + y2 = 1}

L(1)(x, y(x), ε) =

{

c

((

x+ y(x)4ε
y − xy(x)3ε

)

+O(ε2)

)

: c ∈ R

}

, , (x, y(x)) ∈ S.

Here, the function y(x) refers to a graph of x2+y2 = 1 containing the chosen
basepoint (x, y(x)). Graphs of the form x(y) can also be used.

5.3 Parabolic critical manifold

Given the system
(

x′

y′

)

= N(x, y)f(x, y) + εG(x, y, ε) (56)

=

(

−2x
−y

)

(x2 + y − 1) + ε

(

2
−x+ ε

)

.

The critical manifold is S = {f = 0} = {(x, y) ∈ R
2 : y = 1− x2}. This critical

manifold is globally attracting and normally hyperbolic—the Jacobian along S
has one trivial zero eigenvalue and another eigenvalue −(3x2 + 1) < 0. The
attraction onto Sε for ε = 0.01 is numerically demonstrated in Fig. 4.

The CSP method is initialized with the following basis and dual as given in
(40):

A(0) =

(

−2x −1
−y 2x

)

B(0) =
1

4x2 + y

(

−2x −1
−y 2x

)

.

The initial CSP manifold (31) written to O(ε0) order is

K(0) = {(x, y) : y = 1− x2 +O(ε)}.

Define the auxiliary function g(x) = 3x2 + 1. The operator Λ(0) (as defined
in (30)) computed to linear order is

Λ(0)|K(0) =

(

−g(x)− 12x
g(x)ε −3 3x2

−1
g(x)2 ε

2(3x2
−2)

g(x) ε − 12x
g(x)2 ε,

)

+O(ε2).

After one application of the two-step CSP method (37), we obtain the updated
basis matrix

A(1)|K(0) =
(

A
(1)
f A

(1)
s

)

=

(

−2x+ 2(3x2
−2)

g(x)2 ε+ −1 + 6x(3x2
−1)

g(x)3 ε

(x2 − 1)− 4(3x3
−2x)

g(x)2 ε −2x− 3(3x4
−4x2+1)
g(x)3 ε

)

+O(ε2)
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Figure 4: The attraction of four trajectories onto Sε when ε = 0.01 in (56).
Initial conditions for the blue, red, magenta, and green trajectories (denoted
by dots) are (−0.5, 0.5), (−1.25,−1), (1, 1), and (0.25, 0.25), respectively. The
parabolic critical manifold S = {y = 1 − x2} is given by the solid black line.
Leading-order approximations of portions of the linear fast fibers (i.e. N(z) for
z ∈ S) are given by dashed line segments.

and dual B(1)|K(0) .
This gives us the first update of the CSP objects using the definitions (32)–

(33):

K(1) = {(x, y) ∈ R
2 : y = ψ(1)(x) = 1− x2 +

3x

g(x)
ε+O(ε2)}

L(1)(x, ψ(1)(x)) = span Col(A
(1)
f (x, ψ1(x)))

=

{

c

((

−2x+ 2(3x2
−2)

g(x)2 ε

(x2 − 1)− 4(3x3
−2x)

g(x)2 ε

)

+O(ε2)

)

: c ∈ R

}

.

The Λ(1) update (30) is given by

Λ(1)|K(1) =

(

−g(x)− 12x
g(x)ε 0

0 − 12x
g(x)2 ε,

)

+O(ε2).

Observe that the off-diagonal elements now vanish (modulo nonzero O(ε2)
terms) while the diagonal terms remain stable up to order ε. As we continue
to apply the CSP algorithm, the off-diagonal elements can be made to vanish
modulo arbitrarily high orders; see Lemma 3. The order we used in the initial
basis matrix implies that the (1,1) term governs the fast dynamics and (2,2)
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term governs the slow dynamics in the decoupled system.

5.4 Three-species kinetics model

We consider the following reaction-kinetics toy model for three species x, y, and
z:





x′

y′

z′



 =





−5x+ 5y2 − xy + z
10x− 10y2 − xy + z

+xy − z



 + ε





yz − x
−yz + x
−yz + x



 . (58)

This model is studied in [45], and an in-depth numerical analysis compares
the CSP updates with various choices of initial conditions and two versions
of the update rules. They give numerical evidence of nested three-timescale
dynamics when ε = 0.01 by computing the spectrum of the Jacobian of the
right-hand side of (58) along trajectories. Based on these calculations, they
numerically approximate the (one-dimensional) trajectory in R3 corresponding
to the decay of the two fastest modes. As noted in the paper, the eigenvectors
are still relatively straightforward to evaluate symbolically in this problem, but
this example is instructive in showing how we use the formalism to organise and
simplify the calculations. Our first step is to observe that there is a factorisation
which satisfies the assumptions of Section 2:





x′

y′

z′



 = N(x, y, z)f(x, y, z) + εG(x, y, z)

=





−5 −1
10 −1
0 1





(

x− y2

xy − z

)

+ ε





yz − x
−yz + x
−yz + x



 .

Remark 8 This factorisation is far from unique, but this does not affect the
proceeding the argument. We remind the reader that such a factorisation can
be obtained constructively, and furthermore the dimensions of the factors are
constrained by the dimension of the critical manifold [9].

The critical manifold is defined by S = {(x, y, z) : f(x, y, z) = 0} ∩ {y ≥ 0}:

S = {(y2, y, y3) ∈ R
3 : y ≥ 0}.

Assumptions 2.1 and 2.2 are therefore satisfied. We now turn to an analysis
of the normal hyperbolicity of S. We have

DfN |S =

(

−5− 20y 1 + 2y
−5y + 10y2 y − y2 − 1

)

,
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from which

tr(DfN |S) = −6− 21y − y2 < 0

det(DfN |S) = 5 + 20y + 45y2 > 0.

By Lemma 2, the critical manifold S is normally hyperbolic and attracting.
Therefore, assumption 2.3 is also satisfied.

We now consider the reduced flow of the system. From (17), the projector
onto the tangent space of S is given by

ΠS(y) =





1 0 0
0 1 0
0 0 1



−





−5 −1
10 −1
0 1





(

−5− 20y 1 + 2y
−5y + 10y2 y − y2 − 1

)−1(
1 −2y 0
y y2 −1

)

=
5

g(y)





4y 2y 6y
2 1 3
6y2 3y2 9y2



 .

Observe that the image of ΠS is spanned at each point of S by the cor-
responding tangent vector to the curve y 7→ (y2, y, y3) parametrising S, as
expected. In terms of this parametrization, the one-dimensional reduced flow
along S (see Def. 2.4) is

ẏ =
2y2(1 − y2)

1 + 4y + 9y2
.

The reduced flow vanishes at y = 0 and y = 1, corresponding to an unstable
equilibrium (0, 0, 0) and a stable equilibrium (1, 1, 1) along S. Fenichel theory
(Theorem 1) assures the existence of a one-dimensional, normally hyperbolic
slow manifold Sε near to S for ε > 0 sufficiently small, on which the invariant
slow flow converges to the flow of the reduced system.

The analysis so far gives a theoretical underpinning to the dynamics shown
in Fig. 5, as well as to the figures presented in Figs. 4 and 5 of [45], where
a trajectory is tracked as it decays onto an apparent one-dimensional object
which appears to lie close to the equilibria of the vector field. The existence of
a spectral gap in compact neighborhoods of Sε, for which numerical evidence
is given in Fig. 3 of [45], is assured by the theory as ε → 0. Furthermore, the
direction of the flow once trajectories come near to the slow manifold can be
deduced from the reduced flow analysis in the previous paragraph.

We now turn to the CSP method, computing analytically the first-order
corrections to the slow manifold and the fast fibers. Using (40), the initial basis
is given by
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Figure 5: Numerical integration of several trajectories of (58) for ε = 0.01. The
black curve is a portion of the critical manifold S = {(y2, y, y3) ∈ R3 : y ≥ 0}.

A(0) =





−5 −1 2y
x+2y2

10 −1 1
x+2y2

0 1 1





and the dual by B(0) = (A(0))−1. From the definition (31) and an application
of Lemma 4, we can easily write down the first two CSP manifolds. We have

K(0) = {(x, y, z) : (x, z) = (y2, y3) +O(ε)},

K(1) = {(x, y, z) : (x, z) = (y2, y3) + ε
1

g(y)
(p1(y), p2(y)) +O(ε2)},

where

g(y) = det(DfN |S) = 5 + 20y + 45y2

p1(y) = 6y6 + 4y5 − 6y4 − 4y3

p2(y) = 6y7 − 11y6 − 26y5 + 6y4 + 20y3 + 5y2.

We proceed to compute the analogous first-order approximations of the fibers
using Lemma 5. Using Remark 6, we require only the projector ΠS and the
Jacobian DG to derive the proper formula. We evaluate DG along S:
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DG(y) =





−1 y3 y
1 −y3 −y
1 −y3 −y



 .

This suffices to compute the first-order correction of the fast fiber immedi-
ately:

k1(y) = ΠSDGN(DfN)−1

=
25

g(y)2





12y5 + 16y4 + 8y3 + 4y −12y4 + 16y3 + 28y2

6y4 + 8y3 + 4y2 + 2 −6y3 + 8y2 + 14y
18y6 + 24y5 + 12y4 + 6y2 −18y5 + 24y4 + 42y3



 .

The zeroth-order and first-order CSP fast fibers defined in (33) approximat-
ing the linear fast fibers of Sε are therefore given by

L(0) = span Col(A
(0)
f (y, ψ0(y))) = {Nc+O(ε) : c ∈ R

2}

L(1) = span Col(A
(1)
f (y, ψ1(y))) = {(N + εk1(y))c+O(ε2) : c ∈ R

2}.

These and higher-order terms can be directly produced from the CSP iter-
ation.

Remark 9 An apparent nested three-timescale structure of the vector field (58)
was noted in [45]. They provided numerical evidence of a second uniform gap in
the spectrum, computed along a trajectory, and also observed the ‘intermediate’
relaxation of a sample trajectory along a (two-dimensional) surface before a
final relaxation onto a (one-dimensional) curve. Consider the following two-
parameter family of vector fields:





x′

y′

z′



 = Vα,ε(x, y, z)

=





−α −1
2α −1
0 1





(

x− y2

xy − z

)

+ ε





yz − x
−yz + x
−yz + x





= α





−1
2
0



 (x− y2) +





−1
−1
1



 (xy − z) + ε





yz − x
−yz + x
−yz + x





= αN1f1 +N2f2 + εG.

The system (58) was studied for the parameter set (α, ε) = (5, 0.01) in [45],
whereas our analysis fixes only α = 5 so that we can apply Fenichel theory to
the one-parameter family V5,ε of singularly perturbed systems as ε→ 0. In this
context, there are only two distinguished timescales of the system.



CSP IN NONSTANDARD SLOW-FAST SYSTEMS 30

From the point of view of geometric singular perturbation theory, recovering
a three-timescale structure of slow manifolds requires that we consider the full
two-parameter family Vα,ε in the regime α ≫ 1 and ε≪ 1. For α > 0, we rescale
time by s = αt and let δ = 1/α. Then (letting primes denote differentiation by
s) we have





x′

y′

z′



 = N1f1 + δ(N2f2 + εG). (59)

The system is now in a factored form which has recently been studied in non-
standard multiple-timescale systems having a nested three-timescale structure: a
hierarchy of timescales is reflected in a nesting of invariant, normally hyperbolic
submanifolds in the singular limit ε, δ → 0 [2, 24]. In particular, for systems of
the form (59), nested versions of the projector ΠS can also be computed. We
proceed no further with a rigorous analysis of the three-timescale structure, but
point out that adapting our results for nonstandard CSP algorithms to the m-
timescale case (with m ≥ 2) is likely to be a fruitful avenue for further work.
The splitting in (59) should also be compared to the three-term splitting written
down in [45].

5.5 Stiefenhofer’s slime cell model

Recall system (3):









p′

d′

r′

b′









=









2 2
0 1
1 0
−1 0









(

−k5rp2 + k−5b
−k4dp2 + k−4(c− d− r − b)

)

+ ε









k3 − k−3p+ k2Sb
−k1d+ k−1r
k1d− k−1r

0









,(60)

for parameters ki, S, c > 0, together with the perturbation parameter ε > 0.
This system has the factorized form H(z) = N(z)f(z) + εG(z, ε). Using (40),
the initial basis is given by

A(0) =











2 2 k
−5

2k5pr
− p

2r

0 1 −k4k−5d+k
−4k5r

k5(k4p2+k
−4)r

− k
−4r−k4dp

2

(k4p2+k
−4)r

1 0 0 1
−1 0 1 0











and the dual by B(0) = (A(0))−1, whose first two rows are given by the 2 × 4
matrix (DfN)−1Df .

As before, the leading-order term of the graph of K(0) (defined in (31)) will
match the graph of {f = 0}:

K(0) =
{

(p, d, r, b) : (r, b) = ψ(0)(p, d) =
(

k−5α(p, d), k5p
2α(p, d)

)

+O(ε)
}

,
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where

α(p, d) =
−k4dp2 + k−4(c− d)

k−4(k5p2 + k−5)
.

Applying the CSP manifold definition (32), we have

K(1) = {(p, d, r, b) : (r, b) = ψ
(1)
0 (p, d) + εψ

(1)
1 (p, d) +O(ε2)},

where ψ
(1)
0 (p, d) = ψ

(0)
0 (p, d) and the first-order correction ψ

(1)
1 (p, d) can be

factored as

ψ
(1)
1 (p, d) =

1

γ(p)
(β2(p)d

2 + β1(p)d+ β0(p), δ2(p)d
2 + δ1(p)d+ δ0(p)),

for the seven polynomials βi, δi, γ in p, defined as follows:

γ(p) = (k2−4(k−5 + k5p
2)2(−4dk24k5k−5p

5 + k2−4(k
2
−5 + k25p

4 + 2k5k−5p(2c− 2d+ p)) +

k4k−4p(4d(k
2
−5 + k25p

4) + p(k2−5 + k25p
4 + 2k5k−5p(2c+ p))))

β2(p) = k2k4k−1k1p(−2k2k4k
3
5k−4k−5(k4p

2 + k−4)Sp
6 − 4k4k

2
5k−1k−4k

2
−5(k4p

2 + k−4)p
4 +

4k4k
2
5k−1k

2
−4k−5(k4p

2 + k−4)p
4 + 4k24k5k5k

2
−5(k−5 − k−4)(k4p

2 + k−4)p
4 +

4k1k4k5k−4(k−4 − k−5)(k5k−4 − k4k−5)(k5p
2 + k−5)p

4 − 2k2k4k5k−4k
3
−5(k4p

2 + k−4)Sp
2 +

2k3k
2
5k−4k−5(k4p

2 + k−5)(k
2
4p

4 + 2k−4(k−4 − k−5)p
2 + k2−4)Sp

2)

β1(p) = p(−2k4k
3
5k−3k

2
−4k−5p

7 + 2ck2k4k
3
5k

2
−4k−5Sp

6 − k4k
2
5k−1k−4k

2
−5(k4p

2 + k−4)p
5 +

k4k
2
5k−1k

2
−4k−5(k4p

2 + k−4)p
5 + k1k4k

2
5k

2
−4(k−4 − k−5)(k5p

2 + k−5)p
5 +

4ck4k
2
5(k1 − k−1)k

2
−4(k−4 − k−5)k−5p

4 − 8ck24k5k−1k−4k
2
−5(k−5 − k−4)p

4 +

k4k5k−1k−4(k−4 − 2k−5)k
2
−5(k4p

2 + k−4)p
3 + k25k−1k

3
−4k−5(k4p

2 + k−4)p
3 +

k1k5k
2
−4(k5k

2
−4 + k4(k−4 − 2k−5)k−5)(k5p

2 + k−5)p
3 + 2k25k−3k

2
−4k−5(k

2
4p

4 + k4(2k−4 − 3k−5)p
2 +

k2−4)p
3 − 4ck4k5k−1k

2
−4k

2
−5(k−5 − k−4)p

2 − 4ck2k
2
5k

2
−4k−5(k

2
4p

4 + k4(2k−4 − k−5)p
2 +

k2−4)Sp
2 + 2ck4k5k

2
−4k

2
−5(2k1k−4 − 2k1k−5 + k2k−5S)p

2 +

k5k−1k
3
−4k

2
−5(k4p

2 + k−4)p− k1k4k
2
−4k

3
−5(k5p

2 + k−5)p+

k1k5k
4
−4k−5(k5p

2 + k−5)p+ 2k5k−3k
2
−4k

2
−5(k

2
4p

4 + k4(2k−4 − 3k−5)p
2 +

k2−4)p− k4k−4k
4
−5(2k−3k−4 + k−1(k4p

2 + k−4))p+ 2k3k2−4k−5(k5p
2 + k−5)(k4k5(k5 − k4)p

4 +

2k4k5(k−5 − k−4)p
2 − k5k

2
−4 + k4k

2
−5))

β0(p) = p(ck4k
2
5k

2
−4k−5((−k−1 − 2k−3)k−4 + k−1k−5)p

5 − ck4k5k−1k
2
−4(k−4 − 2k−5)k

2
−5p

3 +

ck25(−k−1 − 2k−3)k
4
−4k−5p

3 + 2c2k5k
2
−4k−5(2k4k−1k−5(k−5 − k−4) +

k2k5k−4(k4p
2 + k−4)S)p

2 + ck4k−1k
2
−4k

4
−5p− ck5k−1k

4
−4k

2
−5p− 2ck5k−3k

3
−4k

2
−5(k4p

2 + k−4)p+

2ck3k5k
3
−4k−5(k4p

2 + k−4)(k5p
2 + k−5))
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δ2(p) = −k5p(−4k24k5k−1k
2
−5(k4p

2 + k−4)p
6 + 4k4k

2
5k−1k−4k−5(k4p

2 + k−4)p
6 + 4k1k4k

2
5k

2
−4(k5p

2 + k−5)p
6

−4k1k
2
4k5k−4k−5(k5p

2 + k−5)p
6 − 4k24k−1k−4k

2
−5(k4p

2 + k−4)p
4 +

4k4k5k−1k
2
−4k−5(k4p

2 + k−4)p
4 + 4k1k4k5k

3
−4(k5p

2 + k−5)p
4 − 4k1k

2
4k

2
−4k−5(k5p

2 + k−5)p
4 +

2k2k5k−4(k4p
2 + k−4)(k4k

2
5p

6 + k4(k4 + 2k5)k−5p
4 + k4k−5(2k−4 + k−5)p

2 + k2−4k−5)Sp
2)

δ1(p) = −k5p(k4k
2
5k−1k−4k−5(k4p

2 + k−4)p
7 + k1k4k

2
5k

2
−4(k5p

2 + k−5)p
7 +

8ck24k5k−1k−4k
2
−5p

6 − 4ck4k
2
5k−1k

2
−4k−5p

6 + 2k4k5k−1k−4k
2
−5(k4p

2 + k−4)p
5 +

k4k5k−1k
2
−4k−5(k4p

2 + k−4)p
5 + k1k4k5k

3
−4(k5p

2 + k−5)p
5 +

2k1k4k5k
2
−4k−5(k5p

2 + k−5)p
5 + 4ck4(2k4 + k5)k−1k

2
−4k

2
−5p

4 −

4ck4k5k−1k
3
−4k−5p

4 + k4k−1k−4k
3
−5(k4p

2 + k−4)p
3 +

k4k−1k
2
−4k

2
−5(k4p

2 + k−4)p
3 + k1k4k

2
−4k

2
−5(k5p

2 + k−5)p
3 +

k1k4k
3
−4k−5(k5p

2 + k−5)p
3 + 4ck4k−1k

3
−4k

2
−5p

2 + 4ck1k4k
2
−4k−5(k5p

2 + k−4)(k5p
2 + k−5)p

2 −

2ck2k5k
2
−4(k4k

2
5p

6 + 2k4(k4 + k5)k−5p
4 + k4k−5(4k−4 + k−5)p

2 + 2k2−4k−5)Sp
2 +

k1k
4
−4(k5p

2 + k−5)
2p+ k−1k

3
−4k−5(k4p

2 + k−4)(k5p
2 + k−5)p+

2k−3k
2
−4(k5p

2 + k−5)(k4k
2
5p

6 + k4(k4 + 2k5)k−5p
4 + k4k−5(2k−4 + k−5)p

2 + k2−4k−5)p−

2k3k
2
−4(k5p

2 + k−5)(k4k
2
5p

6 + k4(k4 + 2k5)k−5p
4 + k4k−5(2k−4 + k−5)p

2 + k2−4k−5))

δ0(p) = −k5p(−ck4k
2
5k−1k

2
−4k−5p

7 − 2ck4k5k−1k
2
−4k

2
−5p

5 −

ck4k5k−1k
3
−4k−5p

5 − ck4k−1k
2
−4k

3
−5p

3 − ck4k−1k
3
−4k

2
−5p

3 +

2c2k2−4k−5(k2k5k−4(k4p
2 + k−4)S − 2k4k−1k−5(k5p

2 + k−4))p
2 −

ck−1k
4
−4k−5(k5p

2 + k−5)p− 2ck−3k
3
−4k−5(k4p

2 + k−4)(k5p
2 + k−5)p+

2ck3k
3
−4k−5(k4p

2 + k−4)(k5p
2 + k−5)).

The fast fiber update, which we do not write down, will be an O(ε) correction
to the first 4× 2 block of A(0), in analogy to the previous examples.

Remark 10 The tensorial nature of the update step only becomes apparent in

systems with dimension higher than two. For example, to compute Λ
(0)
fs , we

must compute the tensor DA
(0)
s . Such computations quickly become unwieldy

for high-dimensional systems after the first or second CSP iterate.

Remark 11 Trajectories in the Figs. 1,3,4, and 5 were computed using a
Dormand-Prince ODE solver in MATLAB R2018a [34]. Symbolic computa-
tions for these examples were performed using Mathematica Version 11.1.1.0
[48]. An example notebook file demonstrating these calculations for (60) has
been uploaded to https:// github.com/ ianlizarraga/Nonstandard-CSP-.

https://github.com/ ianlizarraga/Nonstandard-CSP-
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6 Conclusion

We have given a detailed treatment of the CSP method for nonstandard slow-fast
systems (7), when the vector field admits a geometrically intuitive factorization
in the leading-order term, and demonstrated the method explicitly for nontrivial
examples. There appear to be several other natural connections between the
CSP algorithm and this factorization, which we comment on further.

6.1 CSP as projection

There is a tantalizing connection between the CSP two-step update and the
projection operators (12)–(13) which were naturally induced by the normally
hyperbolic splitting. In the examples 5.1 and 5.2, ΠS is an orthogonal projection
onto TzS, and furthermore the manifold S = Sε is given by f = 0 exactly. Per
Lemma 5, the computation (48) shows that the fast fiber update is trivial if
[N,G] ∈ ker ΠS . This is indeed the case in the first example 5.1 but not in the
modification 5.2.

In view of Remark 7, it is clearly worthwhile to probe deeper geometric
connections between the CSP update step and the projectors which define the
fast and slow subsystems of (7). One step in this direction is a complete ge-
ometric recasting of the iteration as a method which updates the projectors
themselves, initialising with the projectors naturally induced by the factorisa-
tion h0(z) = N(z)f(z).

6.2 CSP as a factorization algorithm for nonstandard vec-
tor fields

As discussed in Sec. 2, the leading-order factorization gives a compact descrip-
tion of the geometry of the system near the critical manifold S when ε = 0, and
gives approximate information about the dynamics on the nearby slow manifold
Sε when ε > 0. Consider the following conjecture.

Conjecture 1 Given system (7) under the Assumptions 2.1–2.3, there exists
a corresponding factorisation

H(z, ε) = Nε(z, ε)fε(z, ε) + εG̃(z, ε),

where the new objects Nε(z, ε), fε(z, ε), and G̃(z, ε) satisfy the following
properties:

• (Slow manifold as a level set) Sε = {z ∈ Rn : fε(z, ε) = 0}.

• (Basis of fast fibers) The columns of Nε(p, ε) span the linear fast fibers
Nε(p) at basepoints p ∈ Sε.

• (Invariance) G̃(p, ε) ∈ TpSε for p ∈ Sε.
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The assertion is that a vector field factorization with respect to the critical
manifold S when ε = 0 will induce a new factorization with respect to the slow
manifold Sε when ε > 0.

We describe a possible direction to answer this conjecture in the affirmative
in the special case where Sε = S (as in the examples 5.1 and 5.2). The idea is
to use the CSP method to obtain iterative refinements of the objects Nε(z, ε),
fε(z, ε), and G̃(z, ε). Writing out the first few terms in the asymptotic series

of the CSP fast fiber L(1) (see (33) and (37)), we have A
(1)
f (z, ε) = N(z) +

εA
(1)
f,1(z) +O(ε2).
The vector field can be re-factorized as follows:

H(z, ε) = N(z)f(z) + εG(z, ε)

= N(z)f(z) + εA
(1)
f,1(z)f(z)− εA

(1)
f,1(z)f(z) + εG(z, ε)

= (N(z) + εA
(1)
f,1(z))f(z) + εG(1)(z, ε),

= N (1)(z, ε)f (1)(z) + εG(1)(z, ε),

where

f (1)(z) := f(z)

N (1)(z, ε) := N(z) + εA
(1)
f,1(z)

G(1)(z, ε) := G(z, ε)−A
(1)
f,1(z)f(z).

In comparison to the original factorization H = Nf + εG, this new factor-
ization has ε-dependence in the ‘leading-order’ term N (1)f (1), and a modified
‘remainder’ term G(1). But observe that S = Sε = {f (1) = 0}. Furthermore,
the column space of the prefactor matrix N (1) is now an O(ε)-approximation
of the fast fibers. Finally, G(1)(z, ε)|S = G(z, ε) ∈ TpS since S is invariant by
assumption.

We can extend this idea in the obvious way to refine the factorization to
some arbitrary order j:

H(z, ε) = N (j)(z, ε)f (j)(z) + εG(j)(z, ε),

f (j)(z) := f(z)

N (j)(z, ε) := N(z) +

j
∑

i=1

εiA
(j)
f,i(z)

G(j)(z, ε) := G(z, ε)−

j
∑

i=1

εi−1A
(j)
f,i(z)f(z).

We remind the reader that the triviality of the level set update f (j) = f is a
consequence of the assumption that S = Sε. The general case where the CSP
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manifolds also update nontrivially is a topic of further study. Here, more care
must be taken to write down the factorizations since the fiber basepoints are not
fixed. Furthermore, nontrivial cross-terms of the form N (k)f (l), where k+ l > j,
begin to appear at a given iterate j.

6.3 CSP for slow manifolds of saddle-type

Normally hyperbolic slow manifolds of saddle-type arise in traveling-wave pro-
files of the FitzHugh-Nagumo model [3], in the Hodgkin-Huxley model [12], and
in models of cardiac pacemakers [23]. Saddle-type slow manifolds and their fast
fibers are challenging to numerically approximate even in the standard case, due
to exponential instabilities in both forward and backward time [1, 6, 11, 22, 46].
It is therefore of interest to relax the assumption that the critical manifold be
attracting for the CSP method.
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A The formalism underlying the CSP method

The purpose of this section is to collect a few results given across the three very
detailed papers [16, 17, 19].

A.1 Change of variables and Lie bracket

In this section, we justify the statement that the variational equation of the
transformed vector field has the structure of a Lie bracket as shown in (24)–
(25). Differentiating BA = I with respect to t, we obtain the identity

BA′ = −AB′. (61)

Furthermore, the chain rule gives

A′ = (DA)z′ (62)

= (DA)H.

Using identities (61)-(62), the variational equation of the transformed vector
field f becomes:

f ′ = (BH)′

= B′H +BH ′

= B′Af +B(DH)H

= −BA′f +B(DH)Af

= B(−(DA)Hf + (DH)Af)

= B(−(DA)H + (DH)A)f

= B[A,H ]f. (63)

This calculation appears in [19].

A.2 Block-diagonalization of Λ

In this section, we justify the characterizations of the invariant manifold and
transverse fiber bundle in terms of a cleverly chosen basis, as shown in (27)–
(28). In the presence of an invariant manifold having a transverse fiber bundle
which is invariant as a family (i.e. the flow maps fibers into fibers), H can be
expressed in a basis which block-diagonalizes the operator Λ. This was proven
in [16, 17] for the case of a slow manifold having a transverse fast fiber bundle,
but the identical argument carries over without distinguishing ‘slow’ versus ‘fast’
components. We demonstrate this for the vanishing of the upper-diagonal block.
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Let M be an invariant manifold with a transverse fiber bundle N ; i.e., at a
point z ∈ M, we have the following splitting:

TzR
n = Nz ⊕ TzMz.

We write A = [Af As], where the columns of the n× (n− k) matrix AF (z)
form a basis of Nz and the columns of the n× k matrix As(z) form a basis of
TzM . The corresponding dual basis similarly spans the dual splitting: we have

B =

(

Bs⊥

Bf⊥

)

.

Proposition 1 For the choice of basis A above, we have Λfs = On−k,k.

Proof. We have

Λfs = Bs⊥[As, H ] (64)

= Bs⊥[(DH)As − (DAs)H ].

By invariance, H ∈ TM for points in M, and so Bs⊥H = 0. The directional
derivative along As must therefore be identically 0 on M as well. This gives us
the following identity:

D(Bs⊥H)As = DBs⊥(H,As) +Bs⊥(DH)As = 0. (65)

Here we clarify that DBs⊥ is a symmetric bilinear form, and this (matrix)
identity is to be understood as taking the standard directional derivative of each
column of As in turn and concatenating the result into a matrix.

Similarly, we have the trivial identity Bs⊥As = 0 on M, coming from the
dual basis criterion. Differentiating with respect to t and using the chain rule,
we obtain

d

dt
(Bs⊥As) = D(Bs⊥As)H (66)

= D(Bs⊥)(As, H) +B⊥
s (DAs)H = 0.

Subtracting identities (65) from (66) and using the symmetry of the bilinear
form, we obtain Λfs = 0. �

The argument for Λsf = On−k,k is similar if slightly more involved, using
the invariance of the fiber bundle to obtain an identity as above [17].



CSP IN NONSTANDARD SLOW-FAST SYSTEMS 41

A.3 Computation of Λ(0)

In this section, we derive the formulas (44) for the four block-components of
Λ(0) = B(0)[A(0), H ]. These formulas involve the computation of tensor fields
such as DN(·, ·) : TRn × Rn−k → Rn, which may be defined pointwise at fixed
basepoints z ∈ Rn as follows:

DN(v, α) =

n
∑

j2=1

n−k
∑

j1=1

∂Nij1

∂zj2
αj1vj2 ,

where α = (α1, · · · , αn − k) ∈ Rn−k and v = (v1, · · · , vn) ∈ TzR
n.

Remark 12 Fix a basepoint z ∈ Rn. For v ∈ TzR
n, it is natural to denote

by DNv the linear transformation DN(v, ·) : Rn−k → Rn. In particular, DNv
can be represented by the n × (n − k) matrix whose ith column is DNiv, and
DNvα = DN(α, v).

The observations in Remark 12 are compatible with our columnwise defini-
tion of the Lie bracket (Def. 3.1). For any differentiable vector field V on Rn

and test vector φ ∈ Rn−k we have

[N, V ]φ = DVNφ−DNV φ. (67)

Furthermore, we recover a version of the product rule when differentiating
the vector field h0 = Nf ; for any test tangent vector v ∈ TzR

n we have

DHv = D(Nf)v = DN(v, f) +NDfv. (68)

The tensor field may be extended in the natural way for matrices of size
n× d, where d ≥ 1. For X ∈ (TRn)d × Rn−k → Rn × Rd, we may define

[DN [X,α]]i = DN [Xi, α], (69)

where i = 1, · · · , d and the subscript refers to the ith column of the object.
The prior two identities (67) and (68) still hold.

We can repeat these constructions for the tensor field D(Df⊤)⊥. With these
results in hand, we proceed to compute the four block components:
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Λ
(0)
ff = B

(0)
s⊥ [A

(0)
f , H ]

= (DfN)−1Df(DHN −DNH)

= (DfN)−1Df((NDf + εDG)N +DN(f,N)−DN(Nf + εG))

= DfN + ε(DGN −DNG) +DN(f,N)−DNNf

= DfN + ε[N,G]

Λ
(0)
fs = B

(0)
s⊥ [A(0)

s , H ]

= (DfN)−1Df((NDf + εDG)(Df⊤)⊥ +DN(f, (Df⊤)⊥)

−D((Df⊤)⊥)(Nf + εG))

= Q1Df([(Df
⊤)⊥, N ]f + ε[(Df⊤)⊥, G]),

= εQ1Df([(Df
⊤)⊥, G]− [(Df⊤)⊥, N ]Q1DfG)

Λ
(0)
sf = B

(0)
f⊥[A

(0)
f , H ]

= Q2(N
⊥)⊤(DHN −DNH)

= Q2(N
⊥)⊤((NDf + εDG)N +DN(f,N)−DN(Nf + εG))

= εQ2(N
⊥)⊤([N,G]),

Λ(0)
ss = B

(0)
f⊥[A

(0)
s , H ]

= Q2(N
⊥)⊤((NDf + εDG)(Df⊤)⊥

+DN(f, (Df⊤)⊥)−D((Df⊤)⊥)(Nf + εG))

= Q2(N
⊥)⊤([D(Df⊤)⊥, N ]f + ε[(Df⊤)⊥, G]).

= εQ2(N
⊥)⊤([(Df⊤)⊥, G]− ([(Df⊤)⊥, N ]Q1DfG),

where we have also used the fact that f = −ε(DfN)−1(DfG) on K(0).
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